科学家制成“世界上最纯净的硅” 量子计算机真的要来了吗?

科学家制成“世界上最纯净的硅” 量子计算机真的要来了吗? (来源:《自然?通讯材料》官网截图)尽管量子计算领域的研究成果往往晦涩难懂,但量子计算机和量子这个概念却在生活中频繁出现(比如名梗:遇事不决量子力学)。那么,量子计算究竟是什么?量子计算机真的可能实现吗?有没有可能用生活中的概念去尝试理解它们?为了让大家对量子计算有一个初步的了解,我们这里尽可能地以通俗化、具象化的语言来跟大家聊聊量子计算的那些三五事儿。量子计算(机)究竟是解决什么问题的?与经典计算不同,量子计算遵循量子力学规律,它是能突破经典算力瓶颈的新型计算模式。量子计算机以量子比特为基本运算单元,所谓的量子比特,是与经典比特作为区分。量子计算的发展历程(来源:国际商业机器公司 IBM)以上句子看起来很难理解,我们这里逐句拆解进行讲述。量子计算,看到对于这种冠有“量子”title 的名词,我们很难不将其与量子力学联系起来。自然而然,这种基于量子力学原理的计算方式与传统的经典计算有着本质的不同。具体来说,在经典计算中,信息是通过二进制数字(bits)来表示的,这种二进制数字或为 0 或为 1,类似一个只有开和关两个状态的“开关”。然而,量子计算打破了这一传统,信息是通过另一种方式即量子比特(qubits)来表示的,这种量子比特可以同时处于 0 和 1 的状态,也就是一种叠加态(这里可以参考薛定谔老先生那只既死又活的神奇猫咪)。除此之外,量子比特之间还可以存在某种特殊的关联,称为量子纠缠,这更类似一个可以处于多个状态的“开关旋钮”。经典信息(左)与量子信息(右)(来源:本源量子)凭借其独特的特性,量子计算机便能够利用量子比特进行计算,并且计算能力可以实现指数级爆炸式增长(这是因为 r 个量子比特可以承载 2r 个状态的叠加态,从而在每次计算中实现 2r 倍的计算量。相比之下,经典计算机需要 2r 个经典比特才能实现同样的算力)。因此量子比特在计算某些特定数学问题方面更胜一筹,这就意味着量子计算机可以纵横并重塑各个领域,突破目前阻碍任何涉及量子力学的极限。量子计算机是否可以实现?要想实现量子计算,目前主流的技术路线包括超导、离子阱、半导体、光学、量子拓扑等(其中,超导和离子阱的发展最为迅速)。目前来看,每种技术路线都有其优缺点,尚未有哪种路线能够完全满足实用化的要求。实现量子计算的主要技术路线(来源:《2023 全球量子计算产业发展展望》)量子计算机利用量子比代替传统计算机中的二进制比特,通过量子叠加和量子纠缠实现计算能力的飞跃。量子计算机的概念最早可以追溯到 20 世纪 80 年代,美国物理学家理查德·费曼(Richard Feynman)提出了利用量子系统模拟其他量子系统的想法。1994 年,美国计算机科学家彼得·秀尔(Peter Shor)提出了一个量子算法,能够高效地分解大数,这一算法展示了量子计算机在解决特定问题上具有潜在优势。量子计算机的发展历程 (来源:日经中文网)进入 21 世纪以来,量子计算机的研制已成为全球科技前沿的重大挑战之一。国际商业机器公司(IBM)、谷歌(Google)、英特尔(Intel)等国际知名科技公司以及多所大学都在量子计算领域投入了大量资源。2019 年,美国谷歌公司研制出 53 个量子比特的计算机“悬铃木”,在全球首次实现量子优越性,他们宣称实现了“量子霸权”(量子处理器在特定任务上的表现超过了当时最先进的经典超级计算机)。值得注意的是,中国在量子计算领域也取得了重大进展。2020 年,中国科学技术大学潘建伟院士团队构建了 76 个光子的量子计算原型机“九章”,使中国成为全球第二个实现量子优越性的国家。2021 年,潘建伟院士团队及合作者成功研制了 113 个光子的“九章二号”和 66 比特的“祖冲之二号”量子计算原型机,使中国成为在光学和超导两条技术路线上都实现量子优越性的国家。2023 年,潘建伟院士团队及合作者又成功构建了 255 个光子的量子计算机原型机“九章三号”,在求解特定数学问题时,比目前全球最快的超级计算机快一亿亿倍,比“九章二号”速度提升了一百万倍。可以说,中国在量子计算领域已处于国际领先地位。“超纯硅”具体是怎么回事?硅是一种常见的半导体材料,广泛应用于现代电子技术中。硅基量子计算是量子计算领域的一个重要分支,它利用硅材料的特性来实现量子比特的存储和操作。具体来说,在硅基量子计算中,硅中的电子可以被限制在微小的区域内,形成所谓的量子点。这些量子点可以作为量子比特,用于存储和处理量子信息。硅基量子计算具有许多潜在的优势,包括与现有半导体工艺的兼容性(指的是其绝大多数工艺与传统的半导体工艺兼容,易于和半导体行业对接)、较长的相干时间(指的是量子比特保持其量子特性的时间)以及可扩展性(增加量子比特数目,以实现大规模量子计算),这使得它们更适合于量子计算。硅量子计算登上《自然》封面 。图片来源:《自然》杂志在经典计算抑或是量子计算,都需要具有规则晶体结构的高纯度硅,这是因为非晶硅充满悬空键、氧分子和其他杂质,导致其电性能不佳。然而,从自然界中直接提取的硅存在一个不可忽视的问题,即它包含三种稳定的同位素:硅-28(28Si)、硅-29(29Si)和硅-30(30Si)。其中,硅-29 约占硅的 4.68% ,其原子核携带非零核自旋,会通过偶极相互作用对用于编码量子比特的电子自旋造成干扰。而硅-30 仅占硅的 3.09% ,含量少且电子自旋与核自旋之间的相互作用较大。这使得只有硅-28 被认为是较为理想且纯净的量子计算材料。因此,尽可能减少硅-29 和硅-30 的影响是提升量子计算性能的关键。为了解决这一问题,研究团队利用聚焦离子束技术,从一种名叫 P-NAME 聚焦离子束系统中将一束聚焦且高速的纯硅-28 离子射向硅片,通过植入硅-28 来消耗自然硅中的硅-29 ,从而将硅-29 的比例从 4.68% 最高降至0.00023%(2.3ppm),将-30 的比例从3.09%最高降至0.00006%(0.6ppm)。随后,他们通过两步退火工艺,将植入后的非晶态重新结晶,恢复了硅片的晶体结构。该技术不仅能实现这种极端的硅-28 富集,还避免引入可能干扰量子比特的其他杂质。聚焦离子束同位素富集 Si-28 原理图(来源:《自然·通讯材料》杂志)为了验证植入效果,研究者们采用了纳米级二次离子质谱(NanoSIMS)分析(这是一种能够精确测量样品中不同同位素比例的技术)。通过分析发现,研究者们确认了植入区域中硅-29 的残留浓度显著降低,并且没有引入额外的杂质,如碳(C)和氧(O)等。此外,透射电子显微镜(TEM)分析进一步证实了植入体积的非晶态特性以及退火后的单晶相外延再结晶。这些结果表明,通过聚焦离子束技术可以在硅晶片中实现高纯度的硅-28 富集区域,为量子比特的稳定性提供了保障。这种技术制造的“超纯硅”有望在新材料设计、人工智能、能源存储以及物流制造等领域为整个社会带来革命性变革。该项目的联合导师、墨尔本大学的戴维-贾米森(David Jamieson)教授表示,他们下一步将证明该种材料能够同时维持许多量子比特的量子相干性。“悟源”系列超导量子计算机(来源:本源量子)这项杰出的工作不仅向人们展示了科学界在量子材料制备领域的进步,也为量子计算的实用化和规模化铺平了道路。随着量子技术的不断... PC版: 手机版:

相关推荐

封面图片

新研究揭示重新配置的经典计算机有能力超越量子计算机

新研究揭示重新配置的经典计算机有能力超越量子计算机 量子计算被誉为一种在速度和内存使用方面都能超越经典计算的技术,有可能为预测以前不可能预测的物理现象开辟道路。许多人认为,量子计算的出现标志着经典或传统计算模式的转变。传统计算机以数字比特(0 和 1)的形式处理信息,而量子计算机则采用量子比特(量子位),以 0 和 1之间的数值存储量子信息。在某些条件下,这种以量子位处理和存储信息的能力可用于设计量子算法,从而大大超越经典算法。值得注意的是,量子以 0 和 1 之间的数值存储信息的能力使得经典计算机很难完美地模拟量子计算机。然而,量子计算机很不稳定,容易丢失信息。此外,即使可以避免信息丢失,也很难将其转化为经典信息,而经典信息是进行有用计算的必要条件。经典计算机不存在这两个问题。此外,巧妙设计的经典算法可以进一步利用信息丢失和翻译这两个难题,以比以前想象的要少得多的资源模拟量子计算机正如最近发表在《PRX Quantum》杂志上的一篇研究论文所报告的那样。科学家们的研究结果表明,与最先进的量子计算机相比,经典计算可以通过重新配置来执行更快、更精确的计算。这一突破是通过一种算法实现的,这种算法只保留了量子态中存储的部分信息只够精确计算最终结果。纽约大学物理系助理教授、论文作者之一德里斯-塞尔斯(Dries Sels)解释说:"这项工作表明,改进计算的潜在途径有很多,包括经典方法和量子方法。此外,我们的工作还凸显了利用容易出错的量子计算机实现量子优势有多么困难。"为了寻求优化经典计算的方法,塞尔斯和他在西蒙斯基金会的同事们把重点放在了一种能忠实呈现量子比特之间相互作用的张量网络上。这些类型的网络出了名的难处理,但该领域的最新进展使得这些网络可以借用统计推理的工具进行优化。作者将该算法的工作与将图像压缩成 JPEG 文件进行了比较,JPEG 文件可以通过消除信息,在几乎感觉不到图像质量损失的情况下,使用更少的空间来存储大型图像。"为张量网络选择不同的结构,就相当于选择不同的压缩形式,就像为图像选择不同的格式,"领导该项目的 Flatiron 研究所约瑟夫-廷德尔(Joseph Tindall)说。"我们正在成功开发用于处理各种不同张量网络的工具。这项工作反映了这一点,我们相信,我们很快就会进一步提高量子计算的标准。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

突破性方法生产的超纯硅有望引发量子计算革命

突破性方法生产的超纯硅有望引发量子计算革命 项目联合导师、墨尔本大学的戴维-贾米森(David Jamieson)教授说,今天(2024年5月7日)发表在《自然》杂志《通讯材料》(CommunicationMaterials)上的这一创新成果,使用了植入纯稳定硅晶体中的磷原子量子比特,通过延长众所周知的脆弱量子相干的持续时间,可以克服量子计算的一个关键障碍。"脆弱的量子相干性意味着计算误差会迅速积累。有了我们的新技术提供的强大相干性,量子计算机可以在几小时或几分钟内解决一些传统或'经典'计算机甚至超级计算机需要几个世纪才能解决的问题,"杰米森教授说。当一个量子比特(如原子核、电子或光子)处于多种状态的量子叠加时,它就是一个量子物体。当量子比特恢复到单一状态时,相干性就会消失,变成像传统计算机比特那样的经典物体,而传统计算机比特永远只有一个或零,永远不会处于叠加状态。量子比特或量子比特量子计算机的构件容易受到环境微小变化的影响,包括温度波动。即使在接近绝对零度(零下 273摄氏度)的宁静冰箱中运行,目前的量子计算机也只能在极短的几分之一秒内保持无差错的一致性。曼彻斯特大学的联合导师理查德-库里(Richard Curry)教授说,超纯硅允许构建高性能量子比特器件,而这是为可扩展量子计算机铺平道路所需的关键部件。"我们所能做的就是有效地创造出构建硅基量子计算机所需的关键'砖块'。库里教授说:"这是创造一项有可能改变人类的技术的关键一步。"主要作者、墨尔本大学/曼彻斯特大学联合培养的博士生 Ravi Acharya 在曼彻斯特大学 P-NAME 聚焦离子束实验室准备硅芯片,以便进行富集。资料来源:墨尔本大学/曼彻斯特大学领衔作者、曼彻斯特大学/墨尔本大学库克森联合学者拉维-阿查里亚说,硅芯片量子计算的最大优势在于它使用了与制造当今计算机芯片相同的基本技术。"目前,日常计算机中的电子芯片由数十亿个晶体管组成,这些晶体管也可用于制造硅量子设备的量子比特。迄今为止,制造高质量硅量子比特的能力部分受限于所用硅起始材料的纯度。我们在这里展示的突破性纯度解决了这一问题"。贾米森教授说:"新型高度纯化的硅计算机芯片可以容纳和保护量子比特,使它们能够更长时间地保持量子相干性,从而能够进行复杂的计算,并大大减少纠错的需要。我们的技术为可靠的量子计算机开辟了道路,有望在人工智能、安全数据和通信、疫苗和药物设计以及能源利用、物流和制造等领域为整个社会带来阶跃式变革。"硅由不起烟的海滩沙制成,是当今信息技术产业的关键材料,因为它是一种丰富而多用途的半导体:它可以作为电流的导体或绝缘体,具体取决于添加到其中的其他化学元素。贾米森教授说:"其他人正在尝试使用替代品,但我们相信硅是量子计算机芯片的主要候选者,它将实现可靠的量子计算所需的持久相干性。"共同作者(左)David Jamieson 教授(墨尔本大学)和(右)Maddison Coke 博士(曼彻斯特大学)在曼彻斯特大学检查用于硅富集项目的 P-NAME 聚焦离子束系统。资料来源:墨尔本大学/曼彻斯特大学他说:"问题在于,虽然天然存在的硅主要是理想的同位素硅-28,但也有大约 4.5% 的硅-29。硅-29 在每个原子核中都有一个额外的中子,它就像一块微小的流氓磁铁,会破坏量子相干性并产生计算误差。"研究人员将一束聚焦的纯硅-28 高速射向硅芯片,使硅-28 逐渐取代芯片中的硅-29 原子,将硅-29 从百万分之四点五减少到百万分之二(0.0002%)。"好消息是,要将硅纯化到这种程度,我们现在可以使用一台标准机器离子注入机你可以在任何半导体制造实验室找到它,并根据我们设计的特定配置进行调整。"在之前发表的与澳大利亚研究理事会量子计算和通信技术卓越中心(ARC Centre of Excellence for Quantum Computation and Communication Technology)合作进行的研究中,墨尔本大学利用纯度较低的硅材料创造了 30 秒的单量子比特相干世界纪录,并且至今仍保持着这一纪录。30 秒的时间足以完成无差错的复杂量子计算。贾米森教授说:"现有最大的量子计算机拥有1000多个量子比特,但由于失去了一致性,在几毫秒内就会出现错误。既然我们已经可以生产出极纯的硅-28,我们的下一步将是证明我们可以同时维持许多量子比特的量子相干性。一台仅有 30 个量子比特的可靠量子计算机在某些应用中的性能将超过当今的超级计算机。"这项最新研究工作得到了澳大利亚和英国政府的研究资助。贾米森教授与曼彻斯特大学的合作得到了英国皇家学会沃尔夫森访问学者奖学金的支持。据澳大利亚联邦科学与工业研究组织 2020 年的一份报告 估计,到 2040 年,澳大利亚的量子计算有可能创造 1 万个工作岗位和 25 亿美元的年收入。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

谷歌科学家发布:量子计算机取得重大突破

谷歌科学家发布:量子计算机取得重大突破 谷歌科学家最近在ArXiv平台上发布了一篇预印本论文,声称在量子计算机领域取得了重大突破。他们表示,通过对Sycamore处理器的升级,谷歌成功提升了量子位的数量,从之前的53个增加到了70个。 这次实验中,谷歌科学家们执行了一项名为随机电路采样的任务,这个任务在量子计算中用于评估计算机的性能和效率。通过运行随机电路并分析结果输出,科学家们测试了量子计算机在解决复杂问题方面的能力。 谷歌的研究结果显示,升级后的70个量子位的Sycamore处理器在执行随机电路采样任务上比业内最先进的超级计算机快了几十亿倍。例如,需要业内最先进超级计算机Frontier计算47.2年才能完成的任务,53个量子位的Sycamore处理器只需要6.18秒就能完成,而新版的70个量子位的Sycamore处理器速度更快。来源 ,, 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

日本团队开发出“光量子计算机”运算纠错技术

日本团队开发出“光量子计算机”运算纠错技术 日本东京大学等的研究团队日前在美国《科学》杂志上发表成果称,开发出能自行纠正“光量子计算机”运算错误的方法。“光量子计算机”是使用光的下一代计算机,这正是这种计算机所面临的最后课题。研究量子信息科学的东大教授古泽明表示:“原理层面的开发已完成。今后将迎来新的时代。”据悉,他们将在9月成立风险企业以推动成果转化。量子计算机使用信息的基本单位“量子比特”,即使是复杂的运算也能高速执行,但过程中容易出现运算错误。使用超导体或离子的计算机已开发出纠错功能,但需要大量量子比特和复杂的布线。此外还存在计算机体积变大和耗电量大的问题。团队此次开发出了高性能的光检测仪,成功创造出一种名为“GKP量子比特”的特殊光状态,它能在运算的同时纠错。包含大量光子的单个光信号工作原理与排列大量量子比特的状态相同,因此有望在计算机体积不增大的情况下提高运算能力。

封面图片

IBM和日本研究所开发下一代量子计算机 拥有10000个量子比特

IBM和日本研究所开发下一代量子计算机 拥有10000个量子比特 量子计算机以解决传统计算机无法解决的复杂问题而闻名。它们有望帮助发现新药,通过更高效的分销路线改善物流,以及许多其他应用。该研究所和IBM预计将在未来几天签署谅解备忘录并宣布这笔交易。据该研究所称,这将是IBM首次与外国研究机构在如此大规模的量子计算领域展开合作。正在开发的量子计算机预计将于2029年投入使用。该计算机拥有超过10000个量子比特,有望无误地计算高级组合。合作伙伴还将开发下一代量子计算机所需的半导体和超导集成电路。量子计算机在接近绝对零度的极低温度下运行,因此需要能够承受极端温度的半导体和电路。该研究所隶属于日本经济产业省,以其在人工智能(AI)相关技术方面的实力而闻名,并拥有与IBM合作项目所需的专利。它还希望引入日本零部件制造商,实现量产。IBM预计将在2025年开始销售拥有1000量子比特的量子计算机。该研究所和IBM将说服日本公司使用它们。该研究所将通过培训日本公司使用量子计算机做出贡献,例如制药商。量子计算机仍处于发展阶段。现有的133量子比特的量子计算机仍然会出错,在研究中使用时通常需要超级计算机的帮助。预计10000量子比特的版本无需超级计算机的帮助即可使用。科学家表示,要使量子计算机投入商业使用,硬件需要达到20000到30000个量子比特的水平。 ... PC版: 手机版:

封面图片

俄拟制造三种不同的50量子位量子计算机

俄拟制造三种不同的50量子位量子计算机 俄罗斯量子中心共同创建人、俄国家原子能集团总裁顾问鲁斯兰·尤努索夫称,俄罗斯可能会在今年年底前制造出三台不同的50量子位量子计算机。尤努索夫说:“到今年年底,我们计划在原子平台上实现50个量子位。我们可能还会展示另一台基于离子平台的替代计算机,同样是50个量子位。也就是说,如果一切顺利,今年年底俄罗斯将拥有三台50个量子位的量子计算机,甚至可能更多。”他补充道:“当我们在2020年开始制定量子计算路线图时,我们就明确表示,世界上有几种领先的平台可以用来构建量子计算机。这些平台包括超导体、原子、离子和光子。还有其他平台,但没有人知道哪一个更好,因此至少要专注于主要的这几个。” 俄新社-电报频道- #娟姐新闻:@juanjienews

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人