藻类细胞被招募来充当治疗肠道疾病的机器人

藻类细胞被招募来充当治疗肠道疾病的机器人 每个微型机器人都由一个海藻细胞(绿色)和抗炎纳米粒子(红色)组成。首先,什么是炎症性肠病?实际上,它是两种消化道自身免疫性疾病的统称,即克罗恩病和溃疡性结肠炎。虽然这两种疾病的确切病因还不完全清楚,但人们认为它们是由于人体免疫系统对入侵的病毒或细菌做出了不当反应而引起的。这种有缺陷的反应会导致被称为巨噬细胞的免疫细胞产生过量的致炎蛋白质,这种蛋白质被称为促炎细胞因子这种情况发生在结肠(又称大肠)内。然后,这些细胞因子转而与巨噬细胞上的受体结合,引发它们产生更多的细胞因子。由此造成的恶性循环会使结肠无限期地发炎,导致腹泻、直肠出血、腹痛、疲劳和体重减轻等症状不断出现。海藻机器人旨在打破这种恶性循环。这些微型机器人由加州大学圣迭戈分校的科学家们创造,每个机器人都是一个活的绿藻细胞,表面覆盖着由生物可降解聚合物制成的纳米颗粒。每个纳米颗粒上又覆盖着巨噬细胞膜。该图说明了微型机器人是如何被运送到结肠的患者(会)先吞下一粒胶囊,里面装满了悬浮在载液中的微型机器人。由于其配方,胶囊的外壳在胃中保持完整,直到达到结肠的中性 pH 值才会溶解。一旦溶解,微型机器人就会释放出来。海藻细胞/机器人游过结肠,彻底分散到整个器官中。结肠中的细胞因子会与机器人上的纳米颗粒结合。这是因为细胞因子将这些颗粒误认为是巨噬细胞,因为它们包裹着巨噬细胞膜。不过,由于纳米粒子不是巨噬细胞,因此不会触发它们产生更多的细胞因子。因此,结肠中的细胞因子数量会逐渐被纳米颗粒"耗尽",从而减轻炎症,使受损组织得以愈合。在对患有肠易激综合症的小鼠进行测试时,发现微型机器人可以减少直肠出血、改善粪便稠度、扭转体重下降趋势并减轻结肠炎症。更重要的是,啮齿动物没有表现出任何副作用。目前正在计划对人类进行临床试验。与约瑟夫-王(Joseph Wang)教授共同领导这项研究的张良芳教授说:"这种方法的优点是不需要药物。我们只是利用天然细胞膜来吸收和中和促炎细胞因子"。Zhang 和 Wang 以前曾利用藻类细胞微型机器人治疗肺炎。有关他们目前研究的论文最近发表在《科学机器人学》杂志上。 ... PC版: 手机版:

相关推荐

封面图片

《微型机器人门户逃脱V1.15无限能量.apk》

《微型机器人门户逃脱V1.15无限能量.apk》 亮点:操控微型机器人穿越神秘门户,无限能量助你畅玩无阻,挑战极限逃脱! 标签:#逃脱游戏 #微型机器人门户逃脱 #安卓手游 更新日期:2025-06-17 20:51:12 链接: https://pan.quark.cn/s/427b349dc307

封面图片

《微型机器人门户逃脱V1.15无限能量(支持中文,触屏游戏).apk》

《微型机器人门户逃脱V1.15无限能量(支持中文,触屏游戏).apk》 操控微型机器人穿越神秘门户,无限能量助你畅玩,支持中文和触屏操作,挑战极限逃脱! #动作冒险 #微型机器人门户逃脱 #安卓手游 2025-06-26 16:35:07 https://pan.quark.cn/s/0ec5f7cdf5da

封面图片

微型机器人游入海洋 捕捉微塑料和细菌

微型机器人游入海洋 捕捉微塑料和细菌 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 观看它们成群结队下水工作的视频:据《ACS Nano》杂志报道,研究人员制造出了微小的磁珠,它们能在受污染的水中成群飞舞,捕捉微塑料和细菌等污染物。微塑料的尺寸为 5 毫米或更小,这给塑料污染问题增添了另一个层面,因为动物可以吃这些微塑料,从而可能受到伤害,或将微粒带入食物链,最终进入人类体内。到目前为止,人们还不完全了解微塑料对人类健康的影响。然而,微塑料本身并不是唯一令人担忧的问题。这些碎片会吸引细菌,包括病原体,这些细菌也会被摄入。为了同时清除水中的微生物和塑料,马丁-普梅拉及其同事转而使用微型机器人系统,该系统由许多小部件组成,模仿自然界的鱼群(如鱼群)协同工作。为了清洁水源,研究人员设计了成群的微小球形机器人,它们可以收集细菌和小块塑料。资料来源:美国化学学会为了制造这种机器人,研究小组将带正电荷的聚合物股与磁性微粒连接起来,磁性微粒只有在暴露于磁场时才会移动。从磁珠表面辐射出来的聚合物链既能吸引塑料,也能吸引微生物。单个成品机器人的直径为 2.8 微米。当暴露在旋转磁场中时,机器人就会聚集在一起。研究人员发现,通过调整自组织成扁平集群的机器人数量,他们可以改变蜂群的运动和速度。为了清洁水源,研究人员设计了成群的微小球形机器人(浅黄色),它们可以收集细菌(绿色)和小块塑料(灰色)。来源:改编自 ACS Nano 2024,DOI: 10.1021/acsnano.4c02115在实验室实验中,研究小组通过在水箱中加入荧光聚苯乙烯珠(1 微米宽)和活跃游动的铜绿假单胞菌(可引起肺炎和其他感染),复制了环境中的微塑料和细菌。接下来,研究人员在水箱中加入微型机器人,并将其置于旋转磁场中 30 分钟,每 10 秒钟开关一次。机器人的浓度为每毫升 7.5 毫克,这是测试的四种浓度中最密集的一种,捕获了大约 80% 的细菌。同时,在相同的浓度下,游离塑料珠的数量也逐渐减少,因为它们被吸引到了微型机器人上。随后,研究人员用永久磁铁收集机器人,并使用超声波将附着在机器人上的细菌分离出来。然后,他们将去除的微生物暴露在紫外线辐射下,完成了消毒。当再次使用时,经过消毒的机器人仍能拾取塑料和微生物,尽管两者的数量都较少。研究人员指出,这种微型机器人系统为清除水中的塑料和细菌提供了一种很有前景的方法。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家创造出世界上最小、最轻、最快的全功能微型水黾机器人

科学家创造出世界上最小、最轻、最快的全功能微型水黾机器人 华盛顿州立大学的研究人员开发出了体积最小、速度最快的微型机器人,有望改变从人工授粉到外科手术的各个领域。这些机器人利用形状记忆合金进行运动,比以前的型号明显更轻、更快,通过模仿自然界昆虫的行为,有望实现更高的自主性和效率。图片来源:西悉尼大学图片社速度和微型化方面的突破机械与材料工程学院的博士生、这项研究的第一作者康纳-特里格斯塔德(Conor Trygstad)说:"与这种规模的其他微型机器人相比,这是非常快的速度,尽管它仍然落后于它们的生物亲戚。一只蚂蚁通常重达五毫克,移动速度可达每秒近一米。"微型机器人的关键在于使机器人移动的微型致动器。特里格斯塔德利用一种新的制造技术,将致动器微型化到不足一毫克,这是目前已知最小的致动器。一个西悉尼大学创造的机器人被放在一个25美分硬币旁边,以显示其大小。资料来源:西悉尼大学领导该项目的西悉尼大学机械与材料工程学院工程学副教授 Néstor O. Pérez-Arancibia 说:"这些致动器是迄今为止为微型机器人开发的最小、最快的致动器。"先进的致动器技术致动器使用一种称为形状记忆合金的材料,这种材料在加热时能够改变形状。之所以称之为"形状记忆",是因为它能记住并恢复到原来的形状。与移动机器人的典型电机不同,这些合金没有任何活动部件或旋转组件。Trygstad 说:"它们的机械性能非常好,轻型致动器的开发开辟了微型机器人技术的新领域。"形状记忆合金一般不用于大规模机器人运动,因为它们的速度太慢。但在西悉尼大学的机器人中,执行器是由两根直径为 1/1000 英寸的微小形状记忆合金线制成的。只需少量电流,这些金属丝就能轻松加热和冷却,使机器人能够以每秒 40 次的速度扇动鳍或移动脚。在初步测试中,致动器还能举起超过自身重量 150 倍的物体。与其他用于使机器人移动的技术相比,SMA 技术也只需要极少量的电力或热量就能使机器人移动。未来方向与改进Trygstad 说:"SMA 系统对供电系统的要求要低得多。"他是一名狂热的钓鱼爱好者,长期以来一直在观察水黾,并希望进一步研究它们的动作。虽然西悉尼大学的水黾机器人是用扁平的拍打动作来移动自己,但自然界的昆虫会用腿做更有效率的划船动作,这也是真正的昆虫能移动得更快的原因之一。研究人员希望模仿另一种昆虫,开发出一种既能在水面上也能在水面下移动的水黾型机器人。他们还在努力利用微型电池或催化燃烧技术,使机器人完全自主,不受电源束缚。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

据物理学家组织网报道,美国华盛顿州立大学科学家以昆虫为模型,开发出一个迷你虫子和一个迷你水黾机器人,是迄今为止已知的最小、最轻、

据物理学家组织网报道,美国华盛顿州立大学科学家以昆虫为模型,开发出一个迷你虫子和一个迷你水黾机器人,是迄今为止已知的最小、最轻、最快的全功能微型机器人。 据介绍,它们的体重分别为 8 毫克和 55 毫克,且都能以每秒 6 毫米的速度移动,未来有望用于人工授粉、搜救、环境监测、微型制造或机器人辅助手术等领域。 研究团队指出,这两款微型机器人的“秘密武器”是能使其移动的微型致动器。借助新的制造技术,他们将致动器小型化到重量不足 1 毫克,是迄今已知为微型机器人开发的最小、移动速度最快的致动器。 这种致动器使用的材料是形状记忆合金,这种材料在加热时会改变形状。与移动机器人一般使用的电机不同,这些合金不包含任何移动部件或旋转部件。 形状记忆合金通常不用于大型机器人运动,因为它们太慢了。致动器由两条直径为 1/1000 英寸的微小形状记忆合金线制成,只要有少量的电流,电线就可以很容易地加热和冷却,使机器人能够以每秒 40 次的速度拍打鳍或移动脚。在初步测试中,该致动器还能够举起 150 倍于其自身重量的重物。 via 匿名 标签: #机器人 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

从小鼠细胞中提取的肌肉组织能移动"生物杂交机器人"

从小鼠细胞中提取的肌肉组织能移动"生物杂交机器人" 虽然这些系统具有柔软的外形,但它们的许多部件仍像传统的同类产品一样是刚性的。研究人员正在努力为这些软体机器人引入柔性元件,以创造运动能力。正如麻省理工学院简明扼要地所说,"我们的肌肉是大自然的完美致动器"。不过,该团队的研究并不只是简单地模仿肌肉。该校的研究人员正在使用活体肌肉组织与合成机器人部件结合,制造一种被称为"生物混合"的机器人。麻省理工学院工程学教授里图-拉曼(Ritu Raman)证实了这一过程,并指出:"我们用小鼠细胞构建肌肉组织,然后把肌肉组织放在机器人的骨架上。然后,这些肌肉就充当了机器人的致动器每当肌肉收缩时,机器人就会移动。"肌肉纤维连接到一个被称为"挠曲"的"弹簧状"装置上,该装置是系统的一种骨骼结构。生物肌肉组织很难处理,而且通常难以预测。将其放置在培养皿中,肌肉组织会按预期膨胀和收缩,但不是以可控的方式膨胀和收缩。要在机器人系统中使用,它们必须可靠、可预测和可重复。在这种情况下,就需要使用在一个方向上具有顺应性,而在另一个方向上具有抵抗性的结构。拉曼的团队在马丁-卡尔佩珀教授的麻省理工学院制造实验室找到了解决方案。挠性结构仍需根据机器人的规格进行调整,最终选择了刚度为肌肉组织1/100的结构。拉曼指出:"当肌肉收缩时,所有的力都会转化为该方向的运动。这是一种巨大的放大。"拉曼说,这种肌肉纤维/挠性系统可以应用于各种不同尺寸的机器人,但研究小组的重点是制造超小型机器人,以便有朝一日能在体内进行微创手术。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人