哈勃望远镜捕捉到4900万光年外的物质和能量漩涡

哈勃望远镜捕捉到4900万光年外的物质和能量漩涡 哈勃太空望远镜拍摄的 NGC 4951 是室女座的一个螺旋星系,距离地球 4900 万光年。图片来源:ESA/哈勃和 NASA,D. Thilker,M. Zamani(ESA/哈勃)这张照片是在对附近星系的物质和能量运动进行研究时拍摄的,它反映了恒星形成的持续周期。在这个循环中,星系气体凝聚成分子云,然后坍缩形成新恒星。这些新恒星会发出强大的辐射或恒星风,在一个叫做反馈的过程中驱散分子云。剩下的气体则在其他地方形成新的云。这种物质和能量的运动循环决定了星系形成恒星的速度和消耗气体的速度,也就是星系在整个生命过程中的演化过程。对这种演化的理解取决于星系中的星云、恒星和星团:它们是什么时候形成的,以及它们过去的行为。哈勃在测量恒星群方面一直都很出色,在包括 NGC 4951 在内的星系中追踪气体和恒星形成的任务也不例外。NGC 4951 也被归类为塞弗星系,这种星系有一个非常明亮和充满能量的核,被称为活动星系核。这幅图像很好地展示了这个星系的能量,以及整个星系中物质和能量运输的一些动态星系活动:一个闪亮的核心,周围是漩涡臂、发光的粉红色恒星形成区和厚厚的尘埃。编译自/ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

哈勃望远镜捕捉到一个拥有贪婪黑洞的高能量星系

哈勃望远镜捕捉到一个拥有贪婪黑洞的高能量星系 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 这张美国宇航局哈勃太空望远镜拍摄的照片显示的是距地球大约 5000 万光年的螺旋星系 NGC 4951。图片来源:NASA、ESA 和 D. Thilker(约翰霍普金斯大学);图片处理:Gladys Kober(NASA/美国天主教大学):Gladys Kober(美国国家航空航天局/美国天主教大学)NGC 4951 位于室女座,距离地球大约 5000 万光年。它被归类为塞弗特星系,这意味着它是一种能量极高的星系,有一个活跃的星系核(AGN)。不过,塞弗特星系与其他类型的AGN不同,因为我们仍然可以清楚地看到星系本身不同类型的AGN是如此明亮,以至于几乎不可能观测到它们所在的实际星系。像 NGC 4951 这样的 AGN 由超大质量黑洞驱动。当物质旋入黑洞时,会产生整个电磁波谱的辐射,使 AGN 发出耀眼的光芒。哈勃望远镜帮助证明了宇宙中几乎每个星系的核心都存在超大质量黑洞。在这架望远镜于 1990 年发射进入低地球轨道之前,天文学家们只是从理论上推测它们的存在。这次任务通过观测黑洞不可否认的影响,如从黑洞喷射出的物质喷流和围绕黑洞高速旋转的气体和尘埃盘,验证了它们的存在。对 NGC 4951 进行的这些观测为天文学家研究星系的演化过程提供了宝贵的数据,其中特别关注恒星的形成过程。哈勃收集到的这些信息正与詹姆斯-韦伯太空望远镜(JWST)的观测数据相结合,以支持JWST Treasury计划。Treasury计划收集的观测数据侧重于利用单一、连贯的数据集解决多个科学问题的潜力,并促成各种引人注目的科学调查。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃太空望远镜捕捉到一颗类太阳恒星的诞生过程

哈勃太空望远镜捕捉到一颗类太阳恒星的诞生过程 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 这张美国宇航局哈勃太空望远镜拍摄的照片捕捉到了一个由三颗恒星组成的恒星系统。资料来源:NASA、ESA、G. Duchene(格勒诺布尔第一大学);图像处理:Gladys Kober(美国国家航空航天局/美国天主教大学)在美国国家航空航天局哈勃太空望远镜拍摄到的这幅新照片中,三颗恒星从反射星云的空洞中喷薄而出,宛如闪闪发光的宇宙巨石,景象令人惊叹。这个三恒星系统由变星 HP Tau、HP Tau G2 和 HP Tau G3 组成。HP Tau被称为金牛座变星,是一种年轻的变星,还没有开始核聚变,但已经开始进化成类似太阳的氢燃料恒星。金牛座恒星的年龄通常小于 1000 万年。相比之下,我们的太阳大约有 46 亿岁。它们经常被发现仍然包裹在尘埃和气体云中,而它们正是从尘埃和气体云中形成的。地面图像中的方框显示了哈勃在这个三重星系统的大背景下所看到的位置。资料来源:NASA、ESA、G. Duchene(格勒诺布尔第一大学);图像处理:Gladys Kober(美国国家航空航天局/美国天主教大学);插图:KPNO/NOIRLab/NSF/AURA/T.A. Rector(阿拉斯加安克雷奇大学/NSF 的 NOIRLab)与所有变星一样,HP Tau 的亮度也会随时间变化。众所周知,金牛座恒星的亮度既有周期性波动,也有随机波动。随机变化可能是由于一颗正在发育的年轻恒星的混乱性质造成的,比如恒星周围的尘埃和气体吸积盘的不稳定,吸积盘中的物质落到恒星上并被消耗掉,以及恒星表面的耀斑。周期性的变化可能是由于巨大的太阳黑子在视线内外旋转造成的。在恒星周围,一团气体和尘埃云在恒星反射光的照耀下闪闪发光。反射星云本身并不发出可见光,而是在附近恒星发出的光从气体和尘埃上反弹后闪闪发光,就像被汽车前大灯的光芒照亮的雾一样。HP Tau 位于大约 550 光年之外的金牛座。哈勃对HP Tau的研究是原行星盘调查的一部分,原行星盘是恒星周围的物质盘,经过数百万年凝聚成行星。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

詹姆斯·韦伯太空望远镜捕捉到行星形成的最后阶段

詹姆斯·韦伯太空望远镜捕捉到行星形成的最后阶段 这幅艺术家的作品展示了位于半人马座(The Centaur)南部活动星系 NGC 3783 中心的超大质量黑洞的周围环境。利用欧洲南方天文台智利帕拉纳尔天文台的甚大望远镜干涉仪进行的新观测不仅揭示了黑洞周围的热尘埃环,还揭示了极区的冷物质风。图片来源:ESO/M. 科恩梅瑟而木星、土星、天王星和海王星则主要含有气体。但科学家们很早就知道,行星形成盘一开始的气体质量是固体质量的 100 倍,这就引出了一个紧迫的问题: 大部分气体何时以及如何离开新生的行星系统?揭开行星盘的秘密亚利桑那大学月球与行星实验室的纳曼-巴加(Naman Bajaj)领导的一项发表在《天文杂志》上的新研究给出了答案。研究小组利用詹姆斯-韦伯太空望远镜(JWST)获得了这样一个新生行星系也被称为周星盘的图像,这个行星系正在积极地将气体分散到周围空间。亚利桑那大学月球与行星实验室的二年级博士生巴加说:"知道气体何时散去非常重要,因为这能让我们更好地了解气态行星有多少时间来消耗周围环境中的气体。JWST可以帮助我们揭示行星是如何形成的。"行星的形成过程巴加表示,在行星系统形成的早期阶段,行星凝聚在年轻恒星周围的气体和微尘旋转盘中。这些微粒聚集在一起,形成越来越大的块状物,称为行星体。随着时间的推移,这些行星体碰撞并粘连在一起,最终形成行星。形成的行星的类型、大小和位置取决于可用物质的数量及其在星盘中停留的时间。因此,简而言之,行星形成的结果取决于星盘的演化和散布。这一发现的核心是对 T Cha 星的观测,这是一颗年轻的恒星相对于年龄约为 46 亿岁的太阳而言被一个侵蚀的周星盘所包围,其显著特征是巨大的尘埃间隙,横跨约 30 个天文单位(或 au),1 au 是地球与太阳之间的平均距离。巴加和他的研究小组首次拍摄到了盘风的图像,盘风是指气体缓慢离开行星形成盘时的图像。天文学家们利用了望远镜对原子发出的光的敏感性,当高能辐射(例如星光)将一个或多个电子从原子核中剥离时,原子就会发出光。这种现象被称为电离,电离过程中发出的光可以被用作一种化学"指纹"在 T Cha 系统中,可以追踪到两种惰性气体氖和氩。研究小组在论文中写道,这次观测也是首次在行星形成盘中探测到氩的双重电离。Bajaj说:"我们图像中的氖特征告诉我们,圆盘风来自远离圆盘的扩展区域。这些风的驱动力可能是高能光子本质上是恒星发出的流光或者是行星形成盘中穿梭的磁场"。恒星影响和不断演变的星盘为了区分这两种影响,由荷兰莱顿大学博士后研究员安德鲁-塞勒克(Andrew Sellek)领导的同一研究小组对恒星光子(即年轻恒星发出的强光)驱动的散布进行了模拟。他们将这些模拟结果与实际观测结果进行了比较,发现高能恒星光子的散布可以解释观测结果,因此不能排除这种可能性。该研究得出结论,每年从 T Cha 星盘散逸的气体量相当于地球上的月球。这些结果将发表在一篇配套论文中,目前正在《天文杂志》上进行审查。虽然在许多其他天体中都探测到了霓虹信号,但直到2007年,LPL的教授伊拉利亚-帕斯库奇(Ilaria Pascucci)利用JWST的前身NASA的斯皮策太空望远镜首次发现了霓虹信号,并很快将其确定为磁盘风的示踪剂之后,人们才知道霓虹信号起源于低质量行星形成的磁盘。这些早期发现改变了研究工作的重点,即了解周星盘的气体散布。帕斯库奇是最新观测项目的首席研究员,也是本文所报道的出版物的合著者之一。帕斯库奇说:"我们利用詹姆斯-韦伯太空望远镜发现了空间分辨氖发射,并首次探测到了双电离氩,这可能会成为改变我们对气体如何从行星形成盘中清除的理解的下一步。这些见解将帮助我们更好地了解太阳系的历史和对太阳系的影响。"此外,该研究小组还发现,T Cha 的内盘正在以几十年的极短时间尺度演化;他们发现 JWST 观测到的光谱与 Spitzer 早期探测到的光谱不同。据领导这项正在进行的工作的LPL二年级博士生谢承彦(Chengyan Xie)说,这种不匹配可以用T Cha内部一个不对称的小圆盘来解释,在两次观测之间的短短17年里,这个圆盘失去了一些质量。谢说:"与其他研究一样,这也暗示着T Cha的圆盘正处于演化的末期。"我们也许能在有生之年见证T Cha内盘所有尘埃质量的消散。"编译自/scitechdaily ... PC版: 手机版:

封面图片

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程 这幅插图显示了一个在宇宙大爆炸后几亿年才形成的星系,在重离子时代,气体是透明和不透明的混合体。来自美国宇航局詹姆斯-韦伯太空望远镜的数据显示,这些早期星系附近存在大量冷的中性气体而且这些气体的密度可能比预想的要高。韦伯望远镜在2022年开始观测几个月后,作为其宇宙演化早期释放科学(CEERS)调查的一部分观测到了这些星系。CEERS包括图像和来自其NIRSpec(近红外摄谱仪)上微型遮光器的光谱数据。作为韦伯早期发布科学(ERS)计划的一部分,CEERS的数据被立即发布,以支持类似的发现。资料来源:NASA、ESA、CSA、Joseph Olmsted(STScI)这一发现是利用詹姆斯-韦伯太空望远镜(James Webb Space Telescope)完成的,该望远镜为我们地球上的人们带来了对形成中星系的首次"实时观测"。通过这架望远镜,研究人员能够看到大量气体发出的信号,这些气体在形成过程中不断积累并吸附到一个小型星系上。虽然根据理论和计算机模拟,星系就是这样形成的,但实际情况却从未出现过。"可以说,这是我们看到的第一张'直接'拍摄的星系形成图像。詹姆斯-韦伯之前向我们展示的是处于演化后期的早期星系,而在这里,我们见证了它们的诞生,从而也见证了宇宙中第一批恒星系统的构建。"尼尔斯-玻尔研究所的卡斯帕-埃尔姆-海因茨助理教授说,他领导了这项新研究。这项研究发表在备受推崇的科学杂志《科学》上。他们是如何做到的:研究人员利用复杂的模型,研究了来自这些星系的光线是如何被其内部和周围的中性气体吸收的,从而能够测量出宇宙第一批星系的形成过程。这种转变被称为莱曼-阿尔法转变。通过测量光线,研究人员能够将新形成的星系中的气体与其他气体区分开来。这些测量结果之所以能够实现,要归功于詹姆斯-韦伯太空望远镜极其灵敏的红外摄谱仪功能。大爆炸后不久诞生的星系研究人员估计,这三个星系的诞生大约发生在宇宙大爆炸之后的 4-6 亿年。虽然这听起来像是一个很长的时间,但它相当于在宇宙 138 亿年总寿命的前 3% 到 4% 的时间里形成的星系。宇宙大爆炸后不久,宇宙还是一团由氢原子组成的巨大不透明气体与今天不同的是,今天的夜空中布满了轮廓分明的恒星。"在宇宙大爆炸后的几亿年里,第一批恒星形成,之后恒星和气体开始凝聚成星系。"达拉赫-沃森(Darach Watson)副教授解释说:"这就是我们在观测中看到的开始过程。"星系的诞生发生在宇宙历史上被称为"再电离纪元"的时期,当时一些第一批星系的能量和光线冲破了氢气迷雾。研究人员正是利用詹姆斯-韦伯太空望远镜的红外视觉捕捉到了这些大量的氢气。这是迄今为止科研人员发现的对寒冷的中性氢气最遥远的测量,氢气是恒星和星系的组成部分。关于早期宇宙宇宙的"生命"始于大约 138 亿年前的一次巨大爆炸宇宙大爆炸。这一事件产生了大量的亚原子粒子,如夸克和电子。这些粒子聚集在一起形成质子和中子,随后凝聚成原子核。宇宙大爆炸后大约 38 万年,电子开始围绕原子核运行,宇宙中最简单的原子逐渐形成。第一批恒星是在几亿年后形成的。在这些恒星的内部,形成了我们周围更大、更复杂的原子。后来,恒星凝聚成星系。我们已知最古老的星系是在宇宙大爆炸后大约 3-4 亿年形成的。我们的太阳系诞生于大约 46 亿年前宇宙大爆炸后 90 多亿年。进一步了解我们的起源这项研究是由卡斯帕-埃尔姆-海因茨(Kasper Elm Heintz)与哥本哈根大学尼尔斯-玻尔研究所宇宙曙光中心的研究同事达拉赫-沃森(Darach Watson)、加布里埃尔-布拉莫尔(Gabriel Brammer)和博士生西蒙妮-维加尔(Simone Vejlgaard)等人密切合作完成的。这项最新成果让他们离实现这一目标更近了一步。研究小组已经申请了更多的詹姆斯-韦伯太空望远镜的观测时间,希望能够扩大他们的新成果,了解更多关于星系形成的最早时代的信息。"目前,我们正在绘制新观测到的星系形成图,其细节比以前更加丰富。与此同时,我们也在不断尝试突破我们所能看到的宇宙的极限。因此,也许我们会走得更远,"Simone Vejlgaard 说。研究人员认为,新知识有助于回答人类最基本的问题之一。"我们人类一直在问的一个最基本的问题是:'我们从哪里来?'在这里,我们通过揭示宇宙中一些最初的结构产生的时刻,拼凑出了更多的答案。"加布里埃尔-布拉莫尔(Gabriel Brammer)副教授总结说:"我们将进一步研究这个过程,希望能够拼凑出更多的拼图碎片。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃太空望远镜带你认识疏散星团

哈勃太空望远镜带你认识疏散星团 这张哈勃太空望远镜拍摄的照片显示的是一个名为 NGC 2164 的疏散星团,它是由一位名叫詹姆斯-邓洛普的苏格兰天文学家于 1826 年首次发现的。NGC 2164 位于银河系的近邻之一被称为大麦哲伦云的卫星星系内。大麦哲伦星云是一个相对较小的星系,距离地球约16万光年。它被认为是一个卫星星系,因为它与银河系有引力约束。图片来源:ESA/哈勃和 NASA, J. Kalirai, A. Milone由于其开放和弥散的结构,它们并不是特别稳定,其组成恒星可能会在几百万年后消散。因此,在新恒星正在形成的螺旋星系和不规则星系中会发现疏散星团,而在椭圆星系中则不会发现疏散星团。在银河系中,我们可以在旋臂内和旋臂之间发现疏散星团。天文学家对所有星团都非常感兴趣,因为其中的恒星都是在大致相同的时间和地点形成的。疏散星团通常比球状星团更容易观测,因为可以对单个恒星进行研究。对星团的研究为了解恒星的形成和演化过程提供了独特的视角。疏散星团是由几十颗到几百颗恒星组成的松散星团。它们存在于螺旋星系和不规则星系中。图片来源:NASA和 ESA迄今为止,天文学界在银河系中已经发现了大约 1100 个疏散星团,不过人们认为还有更多疏散星团存在。Trumpler 14就是其中之一,它位于大约 8000 光年之外,靠近著名的船底座星云的中心,被哈勃拍摄得非常美丽。在整个银河系中,这个空间区域是大质量、高亮度恒星最密集的地方之一。NGC 1872 位于我们的小邻近星系大麦哲伦云中。这个星团具有两种星团类型的特征它和典型的球状星团一样丰富,但要年轻得多,而且和许多疏散星团一样,它的恒星更蓝。这样的中间星团在大麦哲伦云中很常见。资料来源:美国国家航空航天局和欧空局哈勃还瞄准了著名的鹰状星云(NGC 6611)的壮观部分,这是一个开放星团,形成于大约 550 万年前,距离地球大约 6500 光年。这是一个非常年轻的星团,包含许多炙热的蓝色恒星,其强烈的紫外线光芒使周围的鹰状星云发出耀眼的光芒。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃望远镜用最锐利的视角揭示光栅星系的尘埃和暗物质

哈勃望远镜用最锐利的视角揭示光栅星系的尘埃和暗物质 哈勃望远镜拍摄到的 NGC 4753 星系显示了复杂的尘埃结构和暗物质光环。这个星系是研究星系形成和测量宇宙距离的重要场所。NGC 4753 位于室女座,距离地球约 6000 万光年,由天文学家威廉-赫歇尔于 1784 年首次发现。它是室女座第二云中 NGC 4753 星系群的成员,该星系群由大约 100 个星系和星系团组成。这个星系据信是大约 13 亿年前与附近的一个矮星系合并的结果。NGC 4753星系核周围明显的尘埃通道据说就是这次合并过程中吸积形成的。现在人们相信,银河系中的大部分质量都存在于暗物质构成的略微扁平的球形光环中。暗物质是一种目前无法直接观测到的物质,但被认为占宇宙中所有物质的85%左右。它之所以被称为"暗物质",是因为它似乎不与电磁场发生相互作用,因此似乎不会发射、反射或折射光线。由于这个天体的低密度环境和复杂结构,它对检验透镜状星系形成的不同理论也具有科学意义。此外,这个星系还是两个已知的 Ia 型超新星的宿主。这些类型的超新星极其重要,因为它们都是由白矮星爆炸引起的,而白矮星都有伴星,并且总是以相同的亮度达到峰值比太阳亮 50 亿倍。了解这些事件的真实亮度,并将其与表观亮度进行比较,为天文学家提供了一个测量宇宙距离的独特机会。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人