突破性研究发现液晶可用于高效和可调的自发参量下转换

突破性研究发现液晶可用于高效和可调的自发参量下转换 马克斯-普朗克光科学研究所生成光子对的研究装置。图片来源:Tanya Chekhova将单光子一分为二是量子光子学中最有用的工具之一。它可以产生纠缠光子对、单光子、挤压光以及对光量子技术至关重要的更复杂的光状态。这一过程被称为自发参量下转换(SPDC)。马克斯-普朗克光科学研究所"量子辐射"研究组组长 Maria Chekhova 教授在她的实验室。图片来源:Tanya ChekhovaSPDC 与中心对称关系密切。中心对称是指相对于某一点的对称性,例如,正方形是中心对称的,而三角形则不是。SPDC 的本质是将一个光子一分为二,它打破了中心对称。因此,只有在基本单元是中心不对称的晶体中才可能发生 SPDC。SPDC 不可能发生在普通液体或气体中,因为这些物质是各向同性的。然而,最近研究人员发现了具有不同结构的液晶,即所谓的铁电向列液晶。尽管这些材料是流动的,但却具有强烈的中心对称破缺特征。它们的分子细长、不对称,最重要的是,它们可以在外部电场的作用下重新定向。分子的重新定向会改变所产生的光子对的偏振以及产生率。如果包装得当,这种材料的样品可以成为一种非常有用的装置,因为它可以高效地产生光子对,可以很容易地用电场进行调节,还可以集成到更复杂的装置中。马克斯-普朗克光科学研究所的研究人员利用约瑟夫-斯特凡研究所(斯洛文尼亚卢布尔雅那)从默克电子公司合成的铁电向列液晶中制备的样品,首次在液晶中实现了 SPDC。纠缠光子的生成效率与厚度相近的最佳非线性晶体(如铌酸锂)一样高。只需施加几伏特的电场,他们就能开关光子对的产生,并改变这些光子对的偏振特性。这一发现开创了新一代量子光源:灵活、可调、高效。编译自/ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

韩国研究人员发现液晶突破性的定向运动现象

韩国研究人员发现液晶突破性的定向运动现象 他们的研究结果表明,物体只需周期性地改变其在液晶介质中的尺寸,就能实现定向运动。这一创新性发现为众多研究领域带来了巨大的潜力,并有可能在未来开发出微型机器人。研究小组在研究中观察到,液晶中的气泡可以通过周期性地改变大小向一个方向移动,这与其他介质中气泡通常对称增长或收缩的现象截然不同。通过向液晶中引入与头发丝大小相当的气泡并操纵压力,研究人员得以展示这一非凡现象。左起:Sung-Jo Kim、Joonwoo Jeong 教授和 Eujin Um 研究教授。资料来源:UNIST这种现象的关键在于在气泡旁边的液晶结构中产生了相位缺陷。这些缺陷破坏了气泡的对称性,使气泡尽管形状对称,却受到单向力的作用。随着气泡大小的波动,推动和拉动周围的液晶,气泡被推向一个一致的方向,打破了传统的物理定律。该研究的第一作者 Sung-Jo Kim 说:"这一突破性的观察结果展示了对称物体通过对称运动表现出定向运动的能力,这是以前从未见过的现象。"他进一步强调了这一原理对液晶以外的各种复杂流体的潜在适用性。分散在 NLC 中的脉动气泡。资料来源:联合国软件技术研究所Jeong 教授评论说:"这一引人入胜的结果强调了时间和空间对称性破缺在驱动微观层面运动方面的重要意义。此外,它还为推进微观机器人的开发研究带来了希望"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

突破性研究发现大麻中的天然分子镇痛效果可与吗啡媲美

突破性研究发现大麻中的天然分子镇痛效果可与吗啡媲美 疼痛与成瘾综合中心的研究人员对五种萜烯类化合物进行了测试,发现它们的镇痛效果很好。亚利桑那大学健康科学学院在《疼痛》(PAIN)杂志上发表的一项研究发现,在缓解慢性神经性疼痛方面,来自大麻的萜类化合物与吗啡一样有效。此外,将这两种镇痛剂结合使用可改善疼痛缓解效果,且无不良副作用。之前的一些研究表明,大麻植物及其两种主要大麻素四氢大麻酚(THC)和大麻二酚(CBD)可以有效控制慢性疼痛;但是,其效果一般比较温和,而且可能会产生令人不悦的精神副作用。萜烯是赋予植物香气和味道的化合物,它提供了另一种无不良副作用的止痛方法。首席研究员、疼痛与成瘾综合中心成员、图森医学院药理学教授 John Streicher 博士说:"我们一直非常感兴趣的一个问题是,萜类化合物能否用于控制慢性疼痛?我们发现,萜烯类药物确实能很好地缓解一种特定类型的慢性疼痛,而且副作用小、可控。"亚利桑那大学健康科学疼痛与成瘾综合中心成员、图森医学院药理学教授 John Streicher 博士。图片来源:亚利桑那大学健康科学学院 Noelle Haro-Gomez萜烯存在于所有植物中,大多数植物都有两种主要的萜烯种类。大麻的独特之处在于,它含有多达 150 种萜烯,其中多种萜烯是主要种类。Streicher 和研究小组测试了五种在大麻中含量中等到较高的萜烯:α-胡麻烯、β-石竹烯、β-蒎烯、香叶醇和芳樟醇。在之前的一项研究中,Streicher 的团队发现,其中四种萜类化合物在急性疼痛动物模型中模拟了大麻素的效果,包括减轻疼痛感。在这项研究中,他们使用了化疗诱发神经性疼痛的小鼠模型,这是一种慢性疼痛,当剧毒化疗药物导致神经损伤从而引起疼痛时就会出现这种疼痛。大麻的独特之处在于它含有多达 150 种萜烯,其中多种萜烯是主要种类。资料来源:亚利桑那大学健康科学学院 Noelle Haro-Gomez研究人员对这些萜烯进行了单独测试,并与吗啡进行了比较。研究小组发现,每种萜烯都能在接近或高于吗啡峰值效果的水平上成功减轻疼痛感。当萜烯与吗啡结合使用时,所有五种萜烯/吗啡组合的镇痛效果都明显增强。Streicher 说:"这确实让我们大吃一惊,但缓解疼痛的东西并不一定意味着就是好的疗法。"阿片类药物通常用于治疗多种疼痛,但它们也会带来一系列不必要的副作用。阿片类药物会激活大脑的奖赏系统,从而导致成瘾,并且会产生耐受性,当人体习惯了某种药物,需要越来越大的剂量才能产生同样的效果时,就会产生耐受性。阿片类药物还会导致呼吸抑制,从而导致死亡。"我们还研究了萜烯的其他方面,例如:这是否会导致奖赏?这会带来奖励吗?会上瘾吗?它会让你感觉糟糕吗?"Streicher 说。"我们发现是的,萜烯确实能缓解疼痛,而且它们的副作用也相当不错。"没有一种萜烯具有奖赏作用,因此它们成瘾的风险很低。一些萜烯也不会引起厌恶行为,这表明它们可以成为有效的治疗药物,而不会产生令人痛苦的副作用。最后,研究人员测试了萜烯的不同给药途径:注射、口服和吸入汽化的纯萜烯。他们发现,当口服或吸入萜烯类药物时,药效会明显减弱或消失。"很多人吸食萜类物质,这些物质是大麻提取物的一部分,在大麻使用合法的州,这些提取物可以通过商业途径获得,"Streicher 说,"我们惊讶地发现,吸入途径在这项研究中并没有影响,因为有很多至少是传闻性的报告称,无论是口服还是吸入,都可以获得萜类物质的效果。部分混杂因素是萜烯的气味很好闻,而且很难掩盖这种香气,因此人们可能会产生心理安慰剂式的效果。"由于这是第一篇研究萜类化合物副作用的论文,Streicher 将利用其研究结果为下一阶段的研究提供信息萜类化合物能否阻断吗啡等鸦片制剂的奖赏潜能,同时增强其止痛潜能?Streicher 说:"这让我们想到了一种综合疗法,即阿片类药物与高水平的萜烯类药物相结合,在阻断阿片类药物成瘾可能性的同时,实际上可以更好地缓解疼痛。这就是我们现在正在研究的"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现光与磁之间的突破性联系

科学家发现光与磁之间的突破性联系 耶路撒冷希伯来大学应用物理和电气工程研究所自旋电子学实验室主任阿米尔-卡普亚教授宣布了光磁相互作用领域的一项关键性突破。该团队的这一意外发现揭示了光学激光束控制固体磁性状态的机制,有望在各行各业得到切实应用。卡普亚教授说:"这一突破标志着我们对光与磁性材料之间相互作用的理解发生了范式转变。它为光控高速存储技术,特别是磁阻随机存取存储器(MRAM)和创新光学传感器的开发铺平了道路。事实上,这一发现标志着我们对光磁动力学理解的重大飞跃。"利用光束进行磁记录(应用)。资料来源:Amir Capua与光辐射的快速行为相比,磁铁的反应速度较慢,因此通常较少受到关注。通过研究,研究小组得出了一个新的认识:快速振荡光波的磁性成分具有控制磁铁的能力,从而重新定义了物理原理关系。有趣的是,他们发现了一种描述相互作用强度的基本数学关系,它将光的磁场振幅、频率和磁性材料的能量吸收联系在一起。这一发现与量子技术领域密切相关,并结合了迄今为止几乎没有重叠的两个科学界的原理:"我们是利用量子计算和量子光学界公认的原理,但在自旋电子学和磁学界却不太适用的原理,才得出这一认识的,当磁性材料和辐射处于完全平衡状态时,二者之间的相互作用已被充分证实。然而,迄今为止,人们对辐射和磁性材料不平衡的情况只做了非常片面的描述。这种非平衡状态是量子光学和量子计算技术的核心。我们借用量子物理学的原理,对磁性材料中的这种非平衡状态进行了研究,从而获得了磁体甚至可以对光的短时间尺度做出反应的基本认识。此外,这种相互作用被证明是非常重要和有效的。我们的发现可以解释过去二三十年间报道的各种实验结果。"这一发现具有深远的意义,特别是在利用光和纳米磁体进行数据记录的领域。它预示着超高速、高能效光控 MRAM 的潜在实现,以及各行各业信息存储和处理领域的重大变革。此外,在发现这一发现的同时,研究小组还推出了一种能够检测光的磁性部分的专用传感器。与传统传感器不同的是,这种尖端设计提供了各种应用的多功能性和集成性,有可能彻底改变以各种方式利用光的传感器和电路设计。这项研究由自旋电子学实验室的博士候选人 Benjamin Assouline 负责,他在这一突破性发现中发挥了至关重要的作用。由于认识到这一突破的潜在影响,该团队已申请了多项相关专利。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

突破性方法生产的超纯硅有望引发量子计算革命

突破性方法生产的超纯硅有望引发量子计算革命 项目联合导师、墨尔本大学的戴维-贾米森(David Jamieson)教授说,今天(2024年5月7日)发表在《自然》杂志《通讯材料》(CommunicationMaterials)上的这一创新成果,使用了植入纯稳定硅晶体中的磷原子量子比特,通过延长众所周知的脆弱量子相干的持续时间,可以克服量子计算的一个关键障碍。"脆弱的量子相干性意味着计算误差会迅速积累。有了我们的新技术提供的强大相干性,量子计算机可以在几小时或几分钟内解决一些传统或'经典'计算机甚至超级计算机需要几个世纪才能解决的问题,"杰米森教授说。当一个量子比特(如原子核、电子或光子)处于多种状态的量子叠加时,它就是一个量子物体。当量子比特恢复到单一状态时,相干性就会消失,变成像传统计算机比特那样的经典物体,而传统计算机比特永远只有一个或零,永远不会处于叠加状态。量子比特或量子比特量子计算机的构件容易受到环境微小变化的影响,包括温度波动。即使在接近绝对零度(零下 273摄氏度)的宁静冰箱中运行,目前的量子计算机也只能在极短的几分之一秒内保持无差错的一致性。曼彻斯特大学的联合导师理查德-库里(Richard Curry)教授说,超纯硅允许构建高性能量子比特器件,而这是为可扩展量子计算机铺平道路所需的关键部件。"我们所能做的就是有效地创造出构建硅基量子计算机所需的关键'砖块'。库里教授说:"这是创造一项有可能改变人类的技术的关键一步。"主要作者、墨尔本大学/曼彻斯特大学联合培养的博士生 Ravi Acharya 在曼彻斯特大学 P-NAME 聚焦离子束实验室准备硅芯片,以便进行富集。资料来源:墨尔本大学/曼彻斯特大学领衔作者、曼彻斯特大学/墨尔本大学库克森联合学者拉维-阿查里亚说,硅芯片量子计算的最大优势在于它使用了与制造当今计算机芯片相同的基本技术。"目前,日常计算机中的电子芯片由数十亿个晶体管组成,这些晶体管也可用于制造硅量子设备的量子比特。迄今为止,制造高质量硅量子比特的能力部分受限于所用硅起始材料的纯度。我们在这里展示的突破性纯度解决了这一问题"。贾米森教授说:"新型高度纯化的硅计算机芯片可以容纳和保护量子比特,使它们能够更长时间地保持量子相干性,从而能够进行复杂的计算,并大大减少纠错的需要。我们的技术为可靠的量子计算机开辟了道路,有望在人工智能、安全数据和通信、疫苗和药物设计以及能源利用、物流和制造等领域为整个社会带来阶跃式变革。"硅由不起烟的海滩沙制成,是当今信息技术产业的关键材料,因为它是一种丰富而多用途的半导体:它可以作为电流的导体或绝缘体,具体取决于添加到其中的其他化学元素。贾米森教授说:"其他人正在尝试使用替代品,但我们相信硅是量子计算机芯片的主要候选者,它将实现可靠的量子计算所需的持久相干性。"共同作者(左)David Jamieson 教授(墨尔本大学)和(右)Maddison Coke 博士(曼彻斯特大学)在曼彻斯特大学检查用于硅富集项目的 P-NAME 聚焦离子束系统。资料来源:墨尔本大学/曼彻斯特大学他说:"问题在于,虽然天然存在的硅主要是理想的同位素硅-28,但也有大约 4.5% 的硅-29。硅-29 在每个原子核中都有一个额外的中子,它就像一块微小的流氓磁铁,会破坏量子相干性并产生计算误差。"研究人员将一束聚焦的纯硅-28 高速射向硅芯片,使硅-28 逐渐取代芯片中的硅-29 原子,将硅-29 从百万分之四点五减少到百万分之二(0.0002%)。"好消息是,要将硅纯化到这种程度,我们现在可以使用一台标准机器离子注入机你可以在任何半导体制造实验室找到它,并根据我们设计的特定配置进行调整。"在之前发表的与澳大利亚研究理事会量子计算和通信技术卓越中心(ARC Centre of Excellence for Quantum Computation and Communication Technology)合作进行的研究中,墨尔本大学利用纯度较低的硅材料创造了 30 秒的单量子比特相干世界纪录,并且至今仍保持着这一纪录。30 秒的时间足以完成无差错的复杂量子计算。贾米森教授说:"现有最大的量子计算机拥有1000多个量子比特,但由于失去了一致性,在几毫秒内就会出现错误。既然我们已经可以生产出极纯的硅-28,我们的下一步将是证明我们可以同时维持许多量子比特的量子相干性。一台仅有 30 个量子比特的可靠量子计算机在某些应用中的性能将超过当今的超级计算机。"这项最新研究工作得到了澳大利亚和英国政府的研究资助。贾米森教授与曼彻斯特大学的合作得到了英国皇家学会沃尔夫森访问学者奖学金的支持。据澳大利亚联邦科学与工业研究组织 2020 年的一份报告 估计,到 2040 年,澳大利亚的量子计算有可能创造 1 万个工作岗位和 25 亿美元的年收入。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

突破性的全球研究发现21种新型激光材料

突破性的全球研究发现21种新型激光材料 尽管如此,生产有机固态激光器仍具有挑战性,要确定可行的新材料,可能需要进行 15 万次以上的实验,因此充分探索这一领域可能需要花费许多人的一生。事实上,在过去的几十年中,仅有 10-20 种新型 OSL 材料通过了测试。多伦多大学加速联盟的研究人员接受了这一挑战,并利用自驱动实验室(SDL)技术,在几个月内就合成并测试了 1000 多种潜在的 OSL 材料,并发现了至少 21 种性能最佳的 OSL 增益候选材料。SDL 使用人工智能和机器人合成等先进技术来简化新型材料的鉴定过程,这里指的是具有特殊发光特性的材料。迄今为止,SDL 通常局限于一个地理位置的一个物理实验室。发表在《科学》(Science)杂志上的这篇题为《有机激光发射器的异地异步闭环发现》(Delocalized Asynchronous Closed-Loop Discovery of Organic Laser Emitters)的论文,展示了研究团队如何利用分布式实验的概念,即在不同的研究地点分工合作,更快地实现共同目标。来自加拿大多伦多和温哥华、苏格兰格拉斯哥、美国伊利诺伊和日本福冈的实验室参与了这项研究。分布式实验的优势通过这种方法,每个实验室都能贡献自己独特的专业知识和资源这最终为项目的成功发挥了关键作用。这种由云平台管理的分散式工作流程不仅提高了效率,还能快速复制实验结果,最终实现了发现过程的民主化,并加速了下一代激光技术的开发。"这篇论文表明,闭环方法可以去局部化,研究人员可以从分子状态一直深入到设备,你可以加速发现商业化进程中非常早期的材料,"加速联合会主任Alán Aspuru-Guzik博士说。"该团队设计了一个从分子到设备的实验,最终设备在日本制造。这些装置在温哥华进行了放大,然后转移到日本进行表征。"这些新型材料的发现标志着分子光电子学领域的重大进展。它为增强 OSL 器件的性能和功能铺平了道路,并为未来材料科学和自动驾驶实验室领域的脱域发现活动开创了先例。编译来源:ScitechDailyDOI: 10.1126/science.adk9227 ... PC版: 手机版:

封面图片

突破性人体研究证实"神奇材料"石墨烯是安全的

突破性人体研究证实"神奇材料"石墨烯是安全的 临床试验透视首次人体受控接触临床试验使用的是超纯氧化石墨烯薄膜一种与水兼容的材料。研究人员表示,还需要进一步研究这种氧化石墨烯材料或其他形式的石墨烯是否会产生不同的效果。研究小组还希望确定,长时间接触这种比头发丝还要细几千倍的材料是否会带来额外的健康风险。科学家于 2004 年首次分离出石墨烯,并将其誉为"神奇"材料。可能的应用领域包括电子产品、手机屏幕、服装、涂料和水净化。全世界都在积极探索石墨烯,以帮助对癌症和其他健康问题进行有针对性的治疗,并以植入式设备和传感器的形式使用石墨烯。不过,在用于医疗之前,所有纳米材料都需要经过测试,以确定是否存在潜在的不良影响。研究方法和结果爱丁堡大学和曼彻斯特大学的研究人员招募了 14 名志愿者,在严格控制的接触和临床监测条件下参与研究。志愿者们在从荷兰国家公共卫生研究所带到爱丁堡的一个专门设计的移动暴露室中骑自行车时,通过面罩呼吸了这种物质两个小时。在暴露前和每隔两小时测量一次对肺功能、血压、凝血和血液中炎症的影响。几周后,志愿者被要求返回诊所,重复接触不同大小的氧化石墨烯或清洁空气,以进行比较。结果发现,石墨烯对肺功能、血压或其他大多数生物参数没有不良影响。不过,研究人员注意到,吸入这种材料可能会影响血液凝结的方式,但他们强调这种影响非常小。结论和未来方向爱丁堡大学心血管科学中心的马克-米勒(Mark Miller)博士说:"石墨烯等纳米材料前景广阔,但我们必须确保它们是以安全的方式制造的,然后才能更广泛地应用于我们的生活。能够在人体志愿者身上探索这种独特材料的安全性,是我们在了解石墨烯如何影响人体方面迈出的一大步。通过精心设计,我们可以安全地充分利用纳米技术"。曼彻斯特大学和巴塞罗那加泰罗尼亚纳米科学与纳米技术研究所(ICN2)的科斯塔斯-科斯塔雷洛斯(Kostas Kostarelos)教授说:"这是有史以来第一项涉及健康人群的对照研究,它证明了非常纯净的氧化石墨烯(具有特定的尺寸分布和表面特征)可以进一步开发,从而最大限度地降低对人类健康的危害。""我们花了十多年的时间,从材料和生物科学的角度,同时也从临床能力的角度,通过召集该领域的一些世界顶尖专家,安全地开展了这项受控研究"。英国心脏基金会首席科学与医学官布莱恩-威廉姆斯(Bryan Williams)教授说:"这种石墨烯可以安全地开发出来,而且短期副作用极小,这一发现为开发新设备、创新治疗方法和监测技术打开了大门。我们期待在更长的时间内看到更大规模的研究,以更好地了解我们如何安全地使用石墨烯等纳米材料,在向患者提供救命药物方面取得飞跃。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人