世界上最精确的原子钟每300亿年误差仅1秒

世界上最精确的原子钟每300亿年误差仅1秒 你的米老鼠电子表在日常使用中可以很好地显示时间在开会或午餐时,这里或那里偏差一秒并不重要。但对于像太空发射这样的复杂事件来说,几分之一秒的误差可能意味着控制室里香槟酒瓶塞爆开与人类所能制造的最昂贵爆炸之间的差别。原子钟是实现这些惊人壮举的极其精确的仪器。它们的工作原理是计算某些原子极其可预测的振动例如,铯-133 每秒精确"滴答"9,192,631,770 次,自 20 世纪 60 年代以来,这一直被用来正式定义一秒的长度。它们的精确度在 3 亿年一秒之内。现在,JILA 的科学家们已经开发出了一种更加精确的原子钟。它基于该团队多年来的一些研发成果。首先,它不使用铯原子,而是使用锶原子,锶原子每秒滴答作响429万亿次。这种原子钟不使用微波来测量这些滴答声,而是使用频率高得多的可见光波。数以万计的锶原子被困在一种激光网(或称"光学晶格")中,当它们跳起可预测的舞蹈时,激光网将它们固定在原地。将如此多的锶原子困在一个地方有助于提高精确度,这些锶原子在数十亿年内只会下降一秒。 激光将一团锶原子困在世界上最精确的原子钟的"光学晶格"中 激光将一团锶原子困在世界上最精确的原子钟的"光学晶格"中K.Palubicki/NISTJILA 团队的新原子钟使用了更浅、更柔和的光阱,将精度提高到了破纪录的水平。这就避免了光学晶格原子钟经常出现的两个误差源激光光源的影响和原子相互碰撞。这种新设计的精确度显然可以达到万亿分之 8.1(10 后面有 19 个零)。换句话说,如果时钟运行 300 亿年,误差仅为一秒,这相当于目前宇宙年龄的两倍多。我们想说的是,这真是太精确了。这种惊人的精确度可以用来比以往任何时候都更好地测量时间,从而改进全球定位系统和通信等技术。但它也可以帮助探测物理学本身毕竟重力可以改变时间流逝的速度,而这个仪器可以测量一根头发粗细的距离上的这种差异。这项研究的作者叶俊说:"这个时钟非常精确,它甚至可以在微观尺度上探测到广义相对论等理论所预测的微小效应。它突破了计时的极限。"这项研究已被接受在《物理评论快报》(Physical Review Letters)杂志上发表,目前在 ArXiv 上以预印本的形式提供。编译自/ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

中国成功研制超稳定锶原子光晶格钟,72 亿年仅误差一秒

中国成功研制超稳定锶原子光晶格钟,72 亿年仅误差一秒 据中国科学技术大学官网消息,该校潘建伟、陈宇翱、戴汉宁等组成的研究团队,成功研制了万秒稳定度和不确定度均优于 5×10-18(相当于数十亿年的误差不超过一秒)锶原子光晶格钟。 根据公开发表的数据,该系统不仅是当前国内综合指标最好的光钟,也使得我国成为继美国之后第二个达到上述综合指标的国家。该成果对未来实现远距离光钟比对、建立超高精度的光频标基准和全球性光钟网络奠定了重要的技术基础。 相关成果发表于国际计量领域重要学术期刊《》 频道:@kejiqu 群组:@kejiquchat

封面图片

中国科大实现稳定度和不确定度均优于5E-18的锶原子光晶格钟

中国科大实现稳定度和不确定度均优于5E-18的锶原子光晶格钟 该成果对未来实现远距离光钟比对、建立超高精度的光频标基准和全球性光钟网络奠定了重要的技术基础。相关成果于1月12日发表于国际计量领域重要学术期刊《计量学》。目前,最先进的光钟比国际上用于秒定义的微波喷泉钟的精度高出了两个数量级以上。正是基于量子精密测量技术的发展,第二十七届国际计量大会通过了“关于秒的未来重新定义”的决议,计划于2026年提出关于利用光钟重新定义国际单位制(SI)“秒”的具体路线,并将在2030年做出最终决定。为了推动基于光钟的新一代秒定义,要求至少3个不同实验室的光钟不确定度优于2×10-18,并通过光学链路或移动光钟实现优于5×10-18的频率比对精度。图1 中国科大Sr 1和Sr 2光钟的异步比对操作和稳定度性能研究团队近年来在基于光晶格的超冷原子量子模拟方面开展了卓有成效的工作,已先后在《自然》和《科学》发表了9篇论文,为发展高精度的光晶格钟奠定了必要的技术基础。在该工作中,研究团队实现了锶原子(87Sr)的激光冷却,并将其束缚在长寿命的一维光晶格中,利用一束预先锁定到超稳腔的超稳激光来探寻锶原子钟态跃迁,并实现了光钟闭环运行。通过两套独立的锶原子光晶格钟(Sr 1和Sr 2)进行了频率比对测量,得到单套光钟的稳定度在10000秒积分时间被达到了4×10-18,在47000秒达到了2.1×10-18,整体达到了5.4×10-16/sqrt(τ),τ是积分测量的时间。在此基础上,研究团队还对Sr 1光钟的系统频移因素开展了逐项评定,最终得到其系统不确定度为4.4×10-18相当于72亿年仅偏差1秒。上述性能指标表明该光钟系统已部分满足“秒”重新定义的要求。该研究工作提升了我国原子光频标的性能指标,结合潘建伟、张强、姜海峰、彭承志等前期实现的万秒稳定度优于4×10-19的百公里自由空间高精度时间频率传递 [Nature 610, 661 (2022)],为下一步建立远距离光钟比对(如 Sr/Yb, Sr/Ca+)奠定了坚实基础,对未来构建新一代全球时间基准乃至提供引力波探测、暗物质搜索的新方法等具有重要价值。该研究工作得到了科技部、安徽省、上海市、自然科学基金委、中国科学院和新基石科学基金会等的资助。论文链接: ... PC版: 手机版:

封面图片

邪门!烧脑动画「世界上最倒霉的人」

邪门!烧脑动画「世界上最倒霉的人」 这部异想天开的短片将象征主义和生动的视觉叙事相结合,通过华丽的动画和恰到好处的幽默,讲述了一个命运多舛的倒霉的年轻女子的故事,她的一天在瞬间变得越来越糟。从开车时一条蛇窜到车上开始,到短信发送前的最后一秒手机关机…… 让人眼前浮现出自己曾经也很倒霉透顶的一天。 From AMY HEY via 开眼精选 (author: 全球动画精选)

封面图片

科学家用铜和碳原子锻造出世界上最细的金属丝

科学家用铜和碳原子锻造出世界上最细的金属丝 洛桑联邦理工学院(EPFL)的研究人员利用计算方法研究了78万多种晶体的结构特性,确定了潜在的单维纳米材料,包括可能是最细的金属丝。他们的发现聚焦了14种在电子学和量子研究中具有潜在用途的材料。资料来源:NCCR MARVEL研究人员利用计算工具寻找可以从已知三维晶体中剥离出来的新型一维材料。在一份包含 78 万多种晶体的初始清单中,他们得出了一份包含 800 种一维材料的清单,并从中选出了 14 种最佳候选材料这些化合物尚未合成为真正的金属丝,但模拟结果表明是可行的。其中包括金属丝CuC2,它是由两个碳原子和一个铜原子组成的直线链,是迄今发现的在 0 K 温度下稳定的最细金属纳米线。洛桑联邦理工学院材料理论与模拟实验室的研究人员利用计算方法确定了可能是最细的金属丝,以及其他几种单维材料,这些材料的特性可能会被证明对许多应用领域很有意义。单维(或一维)材料是纳米技术最引人入胜的产品之一,由原子排列成线或管状组成。它们的电学、磁学和光学特性使其成为从微电子学到生物传感器再到催化等各种应用的绝佳候选材料。虽然碳纳米管是迄今为止最受关注的材料,但事实证明它们非常难以制造和控制,因此科学家们迫切希望找到其他化合物,用于制造具有同样有趣特性但更容易处理的纳米线和纳米管。因此,Chiara Cignarella、Davide Campi和Nicola Marzari想到利用计算机模拟来解析已知的三维晶体,根据它们的结构和电子特性,寻找那些看起来很容易"剥离"的晶体,从本质上剥离出稳定的一维结构。同样的方法过去曾成功用于研究二维材料,但这是首次应用于一维材料。研究人员从文献中的各种数据库中收集了超过 78 万个晶体,这些晶体通过范德华力(原子距离足够近,电子重叠时产生的一种微弱相互作用)结合在一起。然后,他们采用一种算法,考虑原子的空间组织,寻找具有线状结构的原子,并计算出需要多少能量才能将这种一维结构从晶体的其他部分分离出来。论文第一作者 Cignarella 说:"我们一直在寻找金属丝,但这种金属丝应该很难找到,因为一维金属原则上应该不够稳定,无法进行剥离"。最终,他们得出了一份包含 800 种一维材料的清单,并从中选出了 14 种最佳候选材料这些化合物尚未合成为真正的导线,但模拟结果表明是可行的。然后,他们开始更详细地计算这些材料的特性,以验证它们的稳定性如何,以及人们对它们的电子行为有何期待。四种材料两种金属和两种半金属成为最有趣的材料。其中金属丝CuC2 是由两个碳原子和一个铜原子组成的直线链是迄今发现的在 0 K 温度下稳定的最细金属纳米线。Cignarella说:"这真的很有趣,因为你不会想到由单线原子组成的实际金属丝会在金属相中保持稳定。科学家们发现,它可以从三种不同的母晶体中剥离出来,这些晶体都是实验中已知的(NaCuC2、KCuC2和 RbCuC2)。从它们中提取这种物质所需的能量很少,而且其链可以弯曲,同时保持其金属特性,这将使它对柔性电子产品产生兴趣。"这项发表在《ACS Nano》上的研究还发现了其他有趣的材料,其中包括半金属Sb2Te2,由于其特性,可以研究一种 50 年前就被预测但从未被观测到的奇异物质状态,即激子绝缘体,这是量子现象在宏观尺度上变得可见的罕见情况之一。此外,还有另一种半金属Ag2Se2 和TaSe3,后者是一种著名的化合物,也是唯一一种已经在实验中剥离成纳米线的化合物,科学家将其作为基准。至于未来,Cignarella 解释说,研究小组希望与实验人员合作,实际合成这些材料,同时继续进行计算研究,了解它们如何传输电荷以及在不同温度下的表现。这两点对于了解它们在实际应用中的性能至关重要。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

世界上最薄的镜头只有三个原子厚

世界上最薄的镜头只有三个原子厚 透镜是用来收集光线、弯曲光线并将光线聚焦到指定点的。这可以放大物体,矫正视力,通过显微镜看到非常微小的物体,或通过望远镜看到非常遥远的物体。镜片通常由弧形玻璃或其他透明材料制成,如隐形眼镜中的水凝胶。但这种经典设计可能意味着大型透镜相当厚重,尤其是用玻璃制成的透镜。为了节省材料,19 世纪发明了一种叫做菲涅尔透镜的替代设计,最初用于灯塔。这种透镜使用一系列同心圆材料将光线衍射到一个焦点,虽然牺牲了一些图像清晰度,但透镜却薄得多。而现在,科学家们几乎将其推向了极限,制造出了厚度仅为 0.6 纳米(nm)的透镜,也就是只有三个原子。这使它成为有史以来最薄的透镜,打破了 2016 年创下的厚度为 6.3 纳米的上一个纪录,比它厚 10 倍。这种新型透镜由二硫化钨同心环组成,它能吸收照射到它的红光,并将红光重新发射到离表面 1 毫米(0.04 英寸)远的焦点上。它的工作原理是形成名为"激子"的短寿命准粒子,然后衰变并发光。由于它能选择性地聚焦红光,其他波长的光实际上不受影响地通过,这可能会带来一些有趣的应用。这项研究的作者约里克-范-德-格鲁普(Jorik van de Groep)说:"这种镜片可用于这样的应用:通过镜片的视线不应受到干扰,但可以利用一小部分光线来收集信息。这使它成为增强现实等可穿戴眼镜的完美选择。"研究小组表示,下一步将研究该技术能否用于制造更复杂的涂层,通过微小的电击激活涂层。这项研究发表在《纳米快报》(Nano Letters)杂志上。 ... PC版: 手机版:

封面图片

沙特为梅西开的薪水啥概念?月薪2.32亿RMB,一秒89一分钟5362

沙特为梅西开的薪水啥概念?月薪2.32亿RMB,一秒89一分钟5362 3.2亿镑是什么概念?根据最新汇率,3.2亿镑约等于27.8亿元人民币。 一个月的薪水约2.32亿元 一天的薪水约770万元 一个小时薪水约32万元 一分钟薪水约5362元 一秒钟薪水约89元

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人