全球最大核聚变项目宣布大幅延期 直言该技术2040年前不太可能商用

全球最大核聚变项目宣布大幅延期 直言该技术2040年前不太可能商用 全球在建的最大实验性托卡马克核聚变反应堆国际热核聚变实验反应堆(ITER)本周三宣布,这个项目将出现设立后的第二次延期,以及潜在建造费用的进一步上调。在中文媒体的语境中,托卡马克核聚变反应堆还有一个更形象的名字“人造太阳”。项目旨在模拟使得太阳发光发热的核聚变过程。由于实现核聚变的原材料(海水中的氘和氚)在地球上极为丰富,且排放无污染,一旦人类能够掌握“造太阳”的技术,将有望实现“能源自由”。(反应堆概念图,来源:ITER)ITER计划最早在2006年获批,中国、欧盟、俄罗斯、印度、美国、日本、韩国七方同意共同出资。其中欧盟提供55%的资金,其余6国各分担9%。延期&加钱ITER组织的总干事彼得罗·巴拉巴斯基(Pietro Barabaschi)在周三召开的记者会上宣布,这个试验装置的关键节点将面临大幅延期。其中初步阶段的运行启动等离子体实验的时间从2025年延后至2033年,更进一步的全氘-氚聚变实验节点预期将从2035年延后至2039年。ITER项目从2013年开始建设,此前曾在2016年提出过一次计划日程表的调整,并追加了预算。延期也意味着工程预算的进一步“膨胀”。最初立项的时候,ITER计划于2020年开始测试,对应耗资约为50亿欧元,此前该预算已经膨胀至200亿欧元。对于最新的预算,项目组目前正在测算中,计划于今年晚些时候提出。不过巴拉巴斯基在周三透露,增加的金额大约为50亿欧元。最新的延期,再一次说明了人类无法依靠“可控核聚变”技术来解决眼下迫在眉睫的问题。例如在未来十年里应对气候变化的压力,以及全球不断增长的能源需求。巴拉巴斯基也在发布会上强调,毫无疑问,ITER的延期并不是朝着正确的方向发展。他也强调:“就核聚变对人类当前面临问题的影响而言,我们不应等待核聚变来解决这些问题,这是不明智的。”被商业项目超过?与2006年时相比,ITER已经不是人类在核聚变项目上的“唯一希望”。包括中国在内,全球也有不少国家和商业组织,正在展开核聚变领域的尝试。所以ITER的又一次延期,也触及到了另一个敏感的问题:这个官方示范项目,是否会被私营企业超越?根据公开报道,老虎环球资本、比尔·盖茨、谷歌等投资的Commonwealth Fusion Systems,以及英国托卡马克能源公司都在使用ITER同类的(但规模较小)的反应堆,并计划在2030年节点前开始原型机测试。对于这个问题,巴拉巴斯基间接予以了回应。他表示“非常怀疑”任何承诺在2040年前实现商业化运营的公司能够按时完成。他说:“即使我们今天证明了热核聚变(技术),我不相信到2040年我们会有能力进行商业部署。我们必须解决其他一些技术问题,使其具有商业可行性。” ... PC版: 手机版:

相关推荐

封面图片

ITER宣布实验继续延期世界最大核聚变装置运行还要等

ITER宣布实验继续延期世界最大核聚变装置运行还要等 ITER是一个巨大甜甜圈形状的磁聚变装置,也被称为托卡马克。托卡马克利用磁场来控制超高温等离子体,从而诱导出核聚变。核聚变是两个或两个以上的轻原子核结合形成一个新原子核的反应,在这个过程中能释放出巨大能量。科学家认为核聚变是一种潜在可行的无碳能源,但成为现实还需要克服许多工程和经济方面的挑战。ITER项目之前的基线(时间框架和里程碑)是在2016年制定的。2020年,突如其来的全球疫情中断了ITER的大部分工作,导致项目进一步推迟。据《科学美国人》报道,ITER项目的成本是最初估计的四倍,最近数据显示项目开支超过220亿美元。在周三早些时候的新闻发布会上,ITER项目总干事彼得罗·巴拉巴斯基(Pietro Barabaschi)解释了项目推迟的原因和更新的项目基线。巴拉巴斯基说:“自2020年10月以来,我们已经向公众和利益相关者明确表示,2025年实现首次等离子体实验不再可能。”“新的基线已经重新设计,优先考虑如何启动研究操作。”巴拉巴斯基表示,新基线将降低操作风险,并为使用氘-氚的聚变反应设备做好准备。他说,与其在2025年进行“短暂、低能量的机器测试”,还不如将更多时间用于调试实验设备,并增加更多的外部加热能力。全磁能运行被推迟了三年时间,从2033年推迟到2036年。氘-氘聚变操作仍将按原计划在2035年前后进行,而氘-氚聚变操作将推迟四年,从2035年推迟到2039年。ITER由中国、欧盟、印度、日本、韩国、俄罗斯和美国等成员国出资建设。目前项目进展缓慢,成本也比最初预计的要高。本周早些时候,ITER组织宣布,托卡马克中用于约束等离子体的巨型磁铁环形磁场线圈已全部交付,这是项目启动20年来的一个重要时刻。这些17米高的巨型线圈将被冷却到零下269摄氏度,围绕在装有等离子体的容器周围,使ITER科学家能够控制内部的聚变反应。ITER基础设施的规模和投资金额一样庞大。目前现存最大的冷质量磁体是欧洲核子研究中心阿特拉斯实验的一个370吨部件,但ITER新交付的全部磁体冷质量为6000吨。ITER的预期目标是展示实现工业规模核聚变所需的集成系统,达到所谓Q≥10(核聚变装置输出能量与输入能量的比例)的科学基准,即为机器内的等离子体提供50兆瓦的加热功率,机器能输出500兆瓦的聚变功率;此外,设备稳态运行过程中能实现Q≥5。这些目标都不容易实现,但实验室环境中科学家用托卡马克和激光进行的核聚变实验,正在帮助人们逐步接近产生能量比反应本身所需能量更多的聚变反应。但核聚变在科学层面的可行性与满足全球能源需求的实际应用还存在巨大差异。人们老生常谈的是,核聚变能成为能源永远是50年之后的事情。它永远超越了当下技术,人们总是被告知“这次会不一样”。ITER项目的目的是验证核聚变能源的技术可行性,但重点并不在于经济可行性。对于人类来说,经济可行性是另一个棘手问题,核聚变发电不仅要成为一种技术上可行的能源,还要成为能并入电网的能源。巴拉巴斯基还提到,ITER托卡马克存放等离子体的容器内壁材料现在将从铍改成钨,“因为很明显,钨与未来的演示机器以及最终的商业聚变装置更相关。”事实上,早在今年5月份,法国超导托卡马克装置WEST就使用钨作为内壁材料,使等离子体维持了比太阳核心温度高3倍的时间长达6分钟。韩国的KSTAR托卡马克也用钨制成的材料取代了碳。正如此前报道的那样,核聚变是一个值得研发的领域,但让人类摆脱化石燃料、作为主要能源不应该依赖它。科学在进步,但核聚变永远是一场超长距离马拉松,而不是短跑。 ... PC版: 手机版:

封面图片

国际热核聚变实验反应堆将运行时间推迟至少八年

国际热核聚变实验反应堆将运行时间推迟至少八年 国际热核聚变实验反应堆(ITER)将其托卡马克装置的运行时间推迟至少八年。托卡马克(Tokamak)是一种利用磁约束来实现磁约束聚变的环性容器,其中央是一个环形的真空室,内部气体在极端高温和高压下变成等离子体。ITER 正在建造世界最大的托卡马克装置,演示可控核聚变的可行性。它原计划在 2025 年测试产生等离子体。但该计划如今推迟到了 2033 年。但推迟并不出人意料。 via Solidot

封面图片

国际热核聚变实验堆(ITER)宣布,7 月 1 日,ITER 聚变能项目来自日本和欧洲的大型环形场线圈完工并交付。19 个巨大的

国际热核聚变实验堆(ITER)宣布,7 月 1 日,ITER 聚变能项目来自日本和欧洲的大型环形场线圈完工并交付。19 个巨大的环形场线圈运抵法国南部。ITER 的等离子体电流峰值将达到 1500 万安培,创下全球托卡马克装置新纪录。组装完成后,ITER 聚变反应堆将产生 500 兆瓦的峰值热能。如果连接到电网,将能够持续产生 200 兆瓦的电力,可满足 20 万户家庭的用电需求。(界面)

封面图片

【获 Google 比尔盖茨投资的聚变反应堆开始建设】不久前,由比尔盖茨、 Google 和许多私募股权公司等投资的核聚变研究公

【获 Google 比尔盖茨投资的聚变反应堆开始建设】不久前,由比尔盖茨、 Google 和许多私募股权公司等投资的核聚变研究公司 Commonwealth Fusion Systems(CFS),已经开始着手建设约 47 英亩的聚变反应堆。 #抽屉IT

封面图片

新型钨反应堆让核聚变更接近现实

新型钨反应堆让核聚变更接近现实 对于那些不熟悉托卡马克的人来说,它本质上是一个甜甜圈形状的装置,利用强大的磁场来容纳和控制等离子体一种极热、带电的气态混合物,对于复制恒星中的聚变反应至关重要。由法国替代能源和原子能委员会(CEA)运营的 WEST(稳态托卡马克中的钨环境)反应堆处于这项研究的最前沿。这一突破取决于钨的使用,钨是灯泡灯丝中常见的灰白色金属。这种金属以其卓越的耐热性能而著称,能使等离子体达到难以置信的高温和高密度,而不会导致腔壁熔化。在创纪录的运行过程中,研究小组向 WEST 注入了 1.15 千兆焦耳的能量,使等离子体在大约 5000 万摄氏度的高温下持续燃烧,其温度是太阳核心温度的三倍多。普林斯顿等离子体物理实验室(PPPL)提供了专门的 X 射线诊断工具,用于精确测量 WEST 内的强等离子体条件,在这一成就中发挥了至关重要的作用。据普林斯顿等离子体物理实验室的路易斯-德尔加多-阿帕里西奥(Luis Delgado-Aparicio)说:"等离子体聚变界是最早利用混合光子计数技术监测等离子体动态的机构之一。"法国原子能委员会科学家泽维尔-利塔乌东(Xavier Litaudon)解释了为什么钨托卡马克的这一成就是如此重大的突破。"我们需要提供一种新的能源,而且这种能源应该是持续和永久的"。核聚变可以成为改变游戏规则的能源一种几乎取之不尽、用之不竭的清洁能源,没有任何放射性废物或碳排放。然而,要实现自持聚变反应,使其产生的能量大于消耗的能量,是一项巨大的挑战。从超高温等离子体中提取比启动和维持核聚变过程所需更多的能量,需要极高的温度和极长的约束时间。这就是为什么最近在 WEST 取得的突破如此令人期待。正如协调该实验的雷米-杜蒙(Remi Dumont)简明扼要地指出的那样"一个惊人的结果"。虽然人类的核聚变能源梦想还需要数年或数十年的时间才能实现,但像这样的里程碑式事件表明,我们正在一步步地接近它。主要的参与者也在加倍努力实现核聚变的承诺。微软公司与 Helion 公司合作,计划在 2028 年之前开发出商业核聚变技术,而日本则在去年推出了大型 JT-60SA 托卡马克反应堆一个六层楼高的庞然大物,旨在破解核聚变约束难题。与此同时,扩大这种新型钨反应堆的规模,可以使人们期待已久的核聚变未来更加清晰。 ... PC版: 手机版:

封面图片

核聚变实验已经克服了两个关键障碍 达到“最佳点”

核聚变实验已经克服了两个关键障碍 达到“最佳点”  DIII-D托卡马克反应堆内部。图片来源:Rswilcox (CC BY-SA 4.0)目前,人们正在探索的实现核聚变发电的主要途径之一是使用托卡马克反应堆。这是一种“甜甜圈”形状的真空装置,外面环绕着磁线圈。它借助强大的磁场,将等离子体加热到数亿摄氏度的极高温度,甚至比太阳还热,以达到核聚变的目的。人们一直认为存在一个临界点,即格林沃尔德极限。如果试图提高燃料密度,超过这个临界点时,等离子体就会脱离磁场的约束,四散逃逸,从而可能损坏反应堆。而提高密度对提高产量至关重要,因为实验表明,托卡马克反应堆的产量与燃料密度的平方成正比。现在,美国通用原子能公司的Siye Ding和同事证明,有一种方法可以提高等离子体密度,且能够实现高约束稳态运行。利用这种方法,他们成功使DIII-D国家聚变设施托卡马克反应堆在平均密度比格林沃尔德极限高出20%的情况下,运行了2.2秒。虽然之前已经打破了这一“关卡”,但稳定性较差、持续时间较短,而且这次的关键指标是,能量约束增强因子H98(y,2)>1。英国贝尔法斯特女王大学的Gianluca Sarri解释说,H98(y,2)显示了磁场对等离子体的约束程度,数值为1或以上意味着等离子体被成功固定在适当的位置。“如果现在开始表现出某种稳态运行,就可以一直处于最佳状态。”Sarri说,“这次实验是在一台小型设备上完成的,如果把结果推广到更大的设备上,就可以在很长一段时间内提高功率、实现增益。”这次DIII-D实验依赖于多方法融合,这些方法本身并不新鲜,但融合起来似乎很有前景。DIII-D等离子体室的外半径只有1.6米,目前还不知道同样的方法是否适用于国际热核聚变实验反应堆(ITER)。这是法国正在建设的下一代托卡马克,半径将达到6.2米。“这次实验对未来的核聚变发电来说是个好兆头。”Ding说,“许多反应堆设计要求同时具有高约束和高密度。从实验上讲,这是第一次实现这一点。”Ding表示:“下一步耗资巨大,目前研究正在朝着许多不同的方向发展,我希望这篇论文有助于集中全球的努力。”相关论文信息: ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人