形变成像:彻底改变我们对地球地下奥秘的看法

形变成像:彻底改变我们对地球地下奥秘的看法 长期以来,GPS、雷达和激光扫描等地表测绘技术一直被用于测量地球表面的特征。现在,德克萨斯大学奥斯汀分校开发的一种新计算技术让科学家们可以利用这些技术来观察地球内部。内华达山脉顶上的全球定位系统站。德克萨斯大学奥斯汀分校的研究人员利用 GPS 网络为地球内部成像。图片来源:UNAVCO/美国国家科学基金会这项新技术被研究人员称为"形变成像",其结果可与地震成像相媲美,但能提供有关地壳和地幔刚性的直接信息。西蒙娜-普埃尔(Simone Puel)说,她在德克萨斯大学杰克逊地球科学学院读研究生期间,为德克萨斯大学地球物理研究所的一个研究项目开发了这种方法。"刚度等材料特性对于理解俯冲带或一般地震科学中发生的不同过程至关重要,"Puel 说。"当与地震、电磁或重力等其他技术相结合时,就有可能以一种前所未有的方式制作出更全面的地震力学模型。"显示日本地下地壳硬度的图形。图片显示了日本大陆板块(暗红色大块)与较硬的海洋板块(深蓝色大块)碰撞的边界。图像中央较小的暗红色斑块很可能是为日本火山(红色三角形)提供能量的岩浆系统。该图像是利用UT Austin 研究人员开发的一种新型形变成像技术收集的数据绘制的。图片来源:Simone Puel普埃尔现在是加州理工学院的一名博士后学者,他在今年早些时候发表了他的方法背后的理论。6 月发表在《科学进展》(Science Advances)上的一项最新研究展示了这一方法的实际应用。该研究利用2011年日本东北地震期间记录的GPS数据,对地下约100公里处的地表进行了成像。该图像揭示了太平洋火环日本部分下方的构造板块和火山系统,包括一个低刚度区域,该区域被认为是为火山系统提供能量的深层岩浆库,这是首次仅利用地表信息探测到这种岩浆库。这种方法的依据是,地壳是由具有不同弹性特性的岩石材料组成的大杂烩。有些部分更柔韧,有些部分更坚硬。这导致地壳收缩和膨胀不均匀。例如,在地震发生时,地球的振动就会反映出它是由什么构成的,从而使地表发生明显的变形。为了将这种不均匀变形转化为地表下的图像,研究人员构建了一个计算机模型,将地球视为一种简化的弹性材料,同时允许其弹性强度在三个维度上变化。然后,该模型根据全球定位系统传感器在地震中的相互移动程度计算出地表下的刚度。结果就是根据地表的变化绘制出地球内部的三维图像。不过,尽管该模型生成了由 1250 万个数据点组成的网络,但图像的清晰度不如地震层析成像,而地震层析成像是对地球内部成像的最常用方法。不过,它可以直接测量刚度,这对建立更复杂的地球模型非常重要。另一个优势是,新方法可以利用卫星进行测量。这些卫星包括美国国家航空航天局(NASA)即将发射的 NISAR 航天器,这是一项与印度空间研究组织(Indian Space Research Organization)的联合任务,每 12 天将以极高分辨率绘制全球地图。研究报告的合著者、杰克逊学院教授托尔斯滕-贝克尔(Thorsten Becker)说,利用这项新技术,NISAR可以为世界上一些地质灾害最严重的地区提供重要的洞察力。通过持续绘制地球表面地图,该卫星将使科学家能够跟踪地震断层在地震周期中的结构变化。该论文的共同作者、UT沃克大学机械工程系和UT奥登计算工程与科学研究所教授奥马尔-加塔斯(Omar Ghattas)说,这种新方法可能是建立地球数字双胞胎的重要一步。这些复杂的计算机模型通过确定在哪里进行新的观测,然后吸收新的数据,从而不断完善自己。他说:"随着模型越来越完善,数据越来越丰富,信息量越来越大,也许我们就可以开始对地震的可预测性发表一些看法了。"编译自/ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

NASA的PACE卫星传回的数据正重新定义我们对地球气候和海洋的看法

NASA的PACE卫星传回的数据正重新定义我们对地球气候和海洋的看法 美国国家航空航天局的 PACE(浮游生物、气溶胶、云层、海洋生态系统)航天器在地球上空运行。图片来源:NASA GSFC浮游生物、气溶胶、云层和海洋生态系统(PACE)卫星于 2 月 8 日发射升空,经过数周的航天器和仪器在轨测试,以确保其正常运行和数据质量。这项任务正在收集数据,公众现在可以访问 年 2 月 28 日,OCI 卫星发布的第一张图像显示了南非海岸附近海洋中这些微小海洋生物的两个不同群落。图像中央部分显示的是粉红色的 Synechococcus 和绿色的 picoeukaryotes。图片左侧显示的是海洋的自然色彩,右侧显示的是叶绿素-a 的浓度,叶绿素-a 是一种光合色素,用于识别浮游植物的存在。图片来源:美国国家航空航天局PACE 数据将使研究人员能够研究海洋中的微观生命和空气中的微粒,从而加深对渔业健康、有害藻类大量繁殖、空气污染和野火烟雾等问题的了解。利用 PACE,科学家还可以研究海洋和大气是如何相互作用并受到气候变化的影响的。美国国家航空航天局局长比尔-纳尔逊(Bill Nelson)说:"这些令人惊叹的图像进一步推动了美国国家航空航天局保护地球家园的承诺。PACE的观测将使我们更好地了解我们的海洋和水道以及以它们为家的微小生物是如何影响地球的。从沿海社区到渔业,NASA正在为所有人收集关键的气候数据。""PACE任务的第一道曙光是我们为更好地了解我们不断变化的地球而持续努力的一个重要里程碑。地球是一个水行星,但我们对月球表面的了解却比对我们自己的海洋还要多。美国宇航局地球科学部主任卡伦-圣杰曼(Karen St. Germain)说:"PACE是几项关键任务之一,包括SWOT和我们即将进行的NISAR任务,这些任务正在开启地球科学的新时代。"PACE 的 OCI 仪器还收集可用于研究大气状况的数据。这幅 OCI 图像的前三幅描绘了从北非飘入地中海的尘埃,显示了科学家们过去利用卫星仪器收集到的数据真彩图像、气溶胶光学深度和紫外线气溶胶指数。下面两张图片展示了新的数据,这些数据将帮助科学家创建更精确的气候模型。单散射反照率(SSA)显示了散射或吸收光的比例,将用于改进气候模型。气溶胶层高度(Aerosol Layer Height)显示气溶胶在地面或大气层中的位置,有助于了解空气质量。资料来源:NASA/UMBC这颗卫星的海洋色彩仪器由位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心建造和管理,它通过紫外线、可见光和近红外线光谱观测海洋、陆地和大气层。以前的海洋色彩卫星只能探测到少数几种波长,而 PACE 能探测到 200 多种波长。有了这一广泛的光谱范围,科学家就能识别浮游植物的特定群落。不同的物种在生态系统和碳循环中发挥着不同的作用大多数是良性的,但有些对人类健康有害因此区分浮游植物群落是该卫星的一项关键任务。PACE 的两台多角度偏振仪 HARP2 和 SPEXone 可以测量云层和大气中微小颗粒反射的偏振光。这些微粒被称为气溶胶,从灰尘、烟雾到海雾等等。这两种偏振计在功能上具有互补性。SPEXone由荷兰空间研究所(SRON)和荷兰空中客车公司(Airbus Netherlands B.V.)制造,将在五个不同的视角下以高光谱分辨率观测地球探测彩虹的所有颜色。马里兰大学巴尔的摩郡分校(UMBC)建造的 HARP2 将以 60 个不同的视角观测四种波长的光。PACE上的SPEXone偏振计仪器提供的早期数据显示了2024年3月16日日本上空和2024年3月6日埃塞俄比亚上空对角线范围内的气溶胶。在上两幅图中,浅色代表偏振光的比例较高。在底部面板中,SPEXone 数据被用来区分细气溶胶(如烟雾)和粗气溶胶(如灰尘和海雾)。SPEXone 数据还可以测量气溶胶对太阳光的吸收程度。在埃塞俄比亚上空,数据显示大部分细颗粒吸收了太阳光,这是典型的生物质燃烧产生的烟雾。在日本,也有细气溶胶,但没有同样的吸收。这表明东京的城市污染被吹向海洋,并与海盐混合。SPEXone 偏振观测结果显示在 PACE 的另一个仪器 OCI 拍摄的真彩背景图像上。资料来源:SRON有了这些数据,科学家们将能够测量云的特性这对了解气候非常重要并监测、分析和识别大气气溶胶,从而更好地向公众通报空气质量。科学家还将能够了解气溶胶如何与云相互作用并影响云的形成,这对于创建精确的气候模型至关重要。2024年3月11日,PACE的HARP2偏振仪拍摄到南美洲西海岸上空云层的早期图像。偏振仪数据可用于确定构成云虹的云滴的信息,云虹是由云滴而不是雨滴反射的阳光产生的彩虹。科学家们可以了解云层对人为污染和其他气溶胶的反应,还可以利用这些偏振测量数据测量云滴的大小。资料来源:UMBC"二十多年来,我们一直梦想着能获得类似PACE的图像。终于看到了真实的东西,这真是超现实。"NASA戈达德的PACE项目科学家杰里米-韦德尔(Jeremy Werdell)说。"所有三个仪器的数据质量都非常高,我们可以在发射两个月后开始公开发布这些数据,我为我们的团队能够做到这一点而感到自豪。这些数据不仅会对我们的日常生活产生积极影响,为空气质量和水生生态系统的健康提供信息,而且还会随着时间的推移改变我们对地球家园的看法。"PACE 任务由美国航天局戈达德分局管理,该分局还建造并测试了航天器和海洋颜色仪器。超角彩虹偏振仪 2 号(HARP2)由巴尔的摩郡马里兰大学设计和制造,行星探测光谱偏振仪(SPEXone)由荷兰空间研究所、空中客车防务公司和荷兰航天公司牵头的荷兰财团开发和制造。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

第一幅地震断层带高精度图像改变了我们对地震的认识

第一幅地震断层带高精度图像改变了我们对地震的认识 地震通过沿单一断层面的单次强震释放应力的观点可能需要纠正。卡尔斯鲁厄理工学院(KIT)与德国地球科学研究中心(GFZ)及其他国际机构合作开展的最新研究表明,地震发生在包含多个断层面的区域内,其中一些断层面是平行的。据作者称,研究结果有助于为俯冲带的地震和地震灾害创建更逼真的模型。该研究发表在《自然》杂志上。由第一作者、来自 KIT 的 Caroline Chalumeau 领导的国际研究小组对南美洲西海岸厄瓜多尔的一系列地震进行了调查。在那里,太平洋板块俯冲到南美洲大陆板块之下。俯冲反复导致非常剧烈的地震。最近在台湾发生的一系列地震也可归因于俯冲作用,其中 4 月初发生的主震造成 9 人死亡,并给台湾东海岸造成广泛破坏。草图显示了 100 米至 600 米厚的地震带,断层面(5 米至 20 米厚)和断裂就位于其中。资料来源:Caroline Chalumeau 博士、Hans Argurto-Detzel 博士、Andreas Rietbrock 教授、Michael Frietsch 博士、Onno Oncken 教授、Monica Segovia 博士、Dr.Onno Oncken 教授、Monica Segovia 博士、Audrey Galve 博士:俯冲界面多断层网络的地震学证据。自然》,2024 年。DOI: 10.1038/s41586-024-07245-y研究小组分析的厄瓜多尔系列地震始于 2022 年 3 月 12 日,止于 2022 年 5 月 26 日。最严重的地震(5.8 级)发生在 3 月 27 日,并在短时间内引发了许多较小的余震。当时,该地区有一个由 100 个地震仪组成的密集网络。该网络是为"佩德纳莱斯地震断裂带俯冲断层高分辨率成像"(简称 HIPER)近海实验而建立的。研究人员利用 HIPER 试验提供的异常详细的数据,并利用人工智能技术,以极高的分辨率绘制了 1500 多次地震及其各自在 15 至 20 公里深处的断层平面图。第一作者、来自 KIT 地球物理研究所(GPI)的 Caroline Chalumeau 博士说:"我们观察到,地震的震级发生在原发区域(即所谓的主震)和次生区域(即余震)。在原发区域内,我们观察到地震发生在几个不同的断层面上,而且往往相互重叠。在一些地方,出现了平行的地震活动平面,而在另一些地方,只有单一的地震活动平面"。地震的平行性与具体深度无关。GPI 的安德烈亚斯-里特布洛克(Andreas Rietbrock)教授说:"有迹象表明,以前那种认为应力是由沿单一断层面的单一强震释放出来的观点可能已经成为过去。相反,我们更应该谈论的是在一次地震中一系列断裂释放的断层网络"。对厄瓜多尔地震系列的分析还提供了有关余震的新见解。Chalumeau 说,这些余震首先发生在主震震中附近,然后逐渐向其他方向传播。她由此得出结论,余震在该地区的传播主要受余震滑动控制。德国地球物理学和天文学研究中心的 Onno Oncken 教授说:"通过这项工作,Caroline Chalumeau 的团队首次展示了地震板块边界的清晰地震学图像。一方面,它证实了现有的地质观测结果,另一方面,它成功地用一种新方法解释了余震的传播。因此,以前关于流体扩散导致余震等假设被推翻了"。"研究结果对于评估俯冲带的地震风险也非常重要。"安德烈亚斯-里特布洛克说:"这项研究将影响未来的地震建模,同时也会影响无地震滑动建模,即没有地震的板块运动。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

探测火星地震是发现火星地下深处隐藏水的新方法

探测火星地震是发现火星地下深处隐藏水的新方法 研究人员正在探索利用来自火星地震的地震电波信号探测火星地下水的可能性,这种方法受到地球上类似技术的启发,但针对火星的独特条件进行了调整。这种捕捉地震波穿过含水层时产生的电磁信号的方法可以揭示火星地表深处隐藏的水源,有可能彻底改变我们对火星上的水及其分布的认识。图片来源:NASA/JPL-Caltech美国国家航空航天局/JPL-加州理工学院如果火星上现在有液态水的话,可能会因为埋藏太深而无法用地球上的传统方法探测到。不过,宾夕法尼亚州立大学的科学家们认为,一种涉及分析火星地震(火星上的地震)的新技术可能会带来突破。地震穿过地下蓄水层时,会产生电磁信号。在发表于《行星研究》(JGR Planets)的一项研究中,研究人员展示了这些信号如何可能揭示火星地表下几英里处是否有水。主要作者诺兰-罗斯(Nolan Roth)是宾夕法尼亚州立大学地球科学系的一名博士候选人,他认为这种方法可以为分析未来的火星任务数据铺平道路。美国国家航空航天局(NASA)的"洞察"(InSight)火星着陆器拍摄的最后一张照片显示,2022 年,着陆器上的地震仪在这颗红色星球的表面工作。一个科学家小组建议,利用着陆器上的地震仪和磁力仪的数据,可以帮助揭示火星地表深处是否存在液态水。图片来源:NASA/JPL-Caltech火星地震探测地下水的潜力罗思说:"科学界有一种理论,认为火星曾经有海洋,在其历史进程中,所有的水都消失了。但有证据表明,一些水被困在地表下的某个地方。只是我们还没有找到。我们的想法是,如果我们能找到这些电磁信号,那么我们就能找到火星上的水。"如果科学家想在地球上找到水,他们可以使用地面穿透雷达等工具来绘制地下地图。但科学家们说,这种技术在地表下数英里处无效,而火星上的水可能就在这个深度。相反,研究人员建议采用一种新颖的地震电法,这是一种较新的技术,用于非侵入性地描述地球地下的特征。当地震波穿过地下含水层时,岩石和水运动方式的差异会产生电磁场。研究人员表示,地表的传感器可以听到这些信号,从而揭示含水层的深度、体积、位置和化学成分等信息。火星地震信号的优势罗思说:"如果我们聆听在地表下移动的火星地震,如果它们穿过水,就会产生这些奇妙、独特的电磁场信号。这些信号可以诊断出火星上目前的、现代的水"。在水资源丰富的地球上,使用这种方法识别活跃的含水层具有挑战性,因为即使在含水层之外的地下也有水存在,当地震波穿过地层时会产生其他电信号。科学家们说,必须将这种背景噪声与含水层信号分离,才能准确识别和描述含水层。宾夕法尼亚州立大学地球科学副教授、罗斯的顾问和合著者朱铁元说:"在火星上,近地表肯定是干燥的,不需要这样的分离。与地球上经常出现的地震电波信号不同,火星表面自然地消除了噪音,暴露出有用的数据,使我们能够确定几个含水层的特性"。在研究中模拟火星地下研究人员创建了一个火星地下模型,并添加了含水层,以模拟地震电法的性能。他们发现,他们可以成功地利用这项技术分析含水层的细节,包括含水层的厚度或厚度,以及含盐量等物理和化学特性。罗斯说:"如果我们能够理解这些信号,我们就能回过头来描述含水层本身的特征。这将为我们提供比以往任何时候都更多的制约因素,帮助我们了解今天火星上的水以及它在过去 40 亿年中的变化情况。这将是向前迈出的一大步。"利用火星上的现有数据和工具罗斯说,未来的工作将令人惊讶地涉及分析已经在火星上收集到的数据。美国国家航空航天局于2018年发射的"洞察"号着陆器向火星运送了一个地震仪,该地震仪一直在监听火星地震并绘制地下地图。然而,地震仪很难将水与气体或密度较低的岩石区分开来。不过,这次任务还包括一个磁力计,作为帮助地震仪的诊断工具。科学家们说,将磁力计和地震仪的数据结合起来,可以发现地震电波信号。研究人员说,在未来的美国国家航空航天局任务中派出专门的磁强计进行科学实验,可能会取得更好的结果。"这不应该仅限于火星例如,这项技术有潜力测量木星卫星上冰海洋的厚度。"我们想向社会传递的信息是,有这样一种前景广阔的物理现象过去较少受到关注可能在行星地球物理学方面具有巨大的潜力"。编译自/scitechdaily ... PC版: 手机版:

封面图片

NASA开发的创新型红外传感器提高了地球和空间成像的分辨率

NASA开发的创新型红外传感器提高了地球和空间成像的分辨率 戈达德工程师 Murzy Jhabvala 拿着他的紧凑型热成像仪技术的核心部件一种高分辨率、高光谱范围的红外传感器,适用于小型卫星和前往其他太阳系天体的任务。资料来源:美国国家航空航天局这些相机配备了高灵敏度、高分辨率的应变层超格传感器,这些传感器最初是由美国宇航局位于马里兰州格林贝尔特的戈达德太空飞行中心开发的,由内部研究与开发(IRAD)计划资助。由于设计紧凑、重量轻、用途广,Tilak Hewagama 等工程师可以根据不同的科学应用对它们进行定制。增强的传感器功能Hewagama 说:"将滤光片直接连接到探测器上,消除了传统镜头和滤光片系统的巨大质量。这使得低质量的仪器拥有了一个紧凑的焦平面,现在可以使用更小、更高效的冷却器进行红外探测。小型卫星和任务可以从其分辨率和精确度中获益。"工程师 Murzy Jhabvala 在马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心领导了最初的传感器开发工作,并领导了今天的滤波器集成工作。Jhabvala 还领导了国际空间站上的"紧凑型热成像仪"实验,该实验展示了新传感器技术如何在太空中生存,同时也证明了其在地球科学领域的重大成功。通过两个红外波段捕捉到的1500多万张图像为发明者贾巴拉、NASA戈达德同事唐-詹宁斯(Don Jennings)和康普顿-塔克(Compton Tucker)赢得了2021年年度发明奖。2019 年和 2020 年,紧凑型热成像仪在国际空间站上捕捉到了澳大利亚异常严重的火灾。凭借其高分辨率,它探测到了火锋的形状和位置,以及火锋距离居民区有多远这些信息对急救人员至关重要。资料来源:美国国家航空航天局地球和空间观测的突破这次试验获得的数据提供了有关野火的详细信息,让人们更好地了解了地球云层和大气层的垂直结构,并捕捉到了由地球陆地特征引起的上升气流,这种上升气流被称为重力波。这种突破性的红外传感器利用层层重复的分子结构与单个光子(或光的单位)相互作用。这种传感器能以更高的分辨率分辨更多波长的红外线:从轨道上看,每个像素的分辨率为 260 英尺(80 米),而目前的热像仪的分辨率为 1000 至 3000 英尺(375 至 1000 米)。这些热量测量相机的成功吸引了美国国家航空航天局地球科学技术办公室(ESTO)、小企业创新与研究以及其他计划的投资,以进一步扩大其覆盖范围和应用。Jhabvala和NASA的先进陆地成像热红外传感器(ALTIRS)团队正在为今年的激光雷达、高光谱和热成像仪(G-LiHT)机载项目开发六波段版本。他说,这种首创的相机将测量地表热量,并能以高帧频进行污染监测和火灾观测。新一代火灾成像技术美国国家航空航天局戈达德地球科学家道格-莫顿(Doug Morton)领导了一个 ESTO 项目,开发用于野火探测和预测的紧凑型火灾成像仪。莫顿说:"我们不会看到更少的火灾,因此我们正试图了解火灾在其生命周期中是如何释放能量的。这将帮助我们更好地理解在一个越来越易燃的世界中火灾的新特性。"CFI 将同时监测释放更多温室气体的最热火灾和产生更多一氧化碳以及烟雾和灰烬等空气传播颗粒的较冷、燃烧的煤炭和灰烬。莫顿说:"在安全和了解燃烧释放的温室气体方面,这些都是关键因素。"莫顿的团队设想,在对火情成像仪进行机载测试后,他们将装备一个由 10 颗小型卫星组成的舰队,每天提供更多的火情图像,从而提供全球火情信息。他说,结合下一代计算机模型,"这些信息可以帮助森林服务和其他消防机构预防火灾,提高前线消防员的安全,保护火灾路径上居民的生命和财产安全"。探测地球内外的云层美国国家航空航天局戈达德地球科学家吴栋说,该传感器装有偏振滤光片,可以测量地球高层大气云层中的冰颗粒是如何散射和偏振光的。吴说,这一应用将补充美国国家航空航天局的浮游生物、气溶胶、云层和海洋生态系统(PACE)任务,该任务在上个月早些时候揭示了其首批光图像。两者都测量光波的偏振方向与红外光谱不同部分的传播方向的关系。他解释说:"PACE偏振计监测可见光和短波红外光。这项任务将重点关注白天观测到的气溶胶和海洋颜色科学。在中波和长波红外波段,新的红外偏振计将从白天和夜间观测中捕捉云层和表面特性。"在另一项工作中,Hewagama 正在与 Jhabvala 和 Jennings 合作,加入线性可变滤光片,以提供红外光谱中更多的细节。这些滤光片可以显示大气分子的旋转和振动以及地球表面的成分。行星科学家卡莉-安德森(Carrie Anderson)说,这项技术也能让前往岩质行星、彗星和小行星的任务受益匪浅。她说,他们可以识别土星卫星恩克拉多斯(Enceladus)巨大羽流中释放出的冰和挥发性化合物。"它们本质上是冰的喷泉,"她说,"当然是冷的,但发出的光在新红外传感器的探测范围之内。在太阳的背景下观察这些羽流,可以让我们非常清楚地识别它们的成分和垂直分布。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

美国国家航空航天局的PACE即将开始工作 揭开地球的微观奥秘

美国国家航空航天局的PACE即将开始工作 揭开地球的微观奥秘 2024年2月8日,美国国家航空航天局(NASA)最新的地球科学卫星在佛罗里达州卡纳维拉尔角太空站成功发射。这张照片拍摄于美国东部时间凌晨1:33,SpaceX公司的猎鹰9号火箭携带NASA的PACE(浮游生物、气溶胶、云层、海洋生态系统)航天器升空。在距离地球数百英里的高空,PACE将研究微小的、通常看不见的东西的影响:水中的微小生命和空气中的微小颗粒。美国国家航空航天局地球科学部主任卡伦-圣杰曼(Karen St. Germain)说:"PACE任务将利用太空独特的有利位置,研究一些可能产生最大影响的最小事物。"通过将高光谱仪和偏振计结合起来,PACE 将深入了解海洋和大气之间的相互作用,以及不断变化的气候如何影响这些相互作用。2024 年 1 月 21 日大地遥感卫星 9 号上的陆地成像仪 2 号拍摄的南澳大利亚海岸浮游植物大量繁殖的卫星图像。海洋中的微小浮游植物可以发展成足以从轨道上看到的大量繁殖。例如,大地遥感卫星9号上的OLI-2(Operational Land Imager-2,陆地成像仪2号)拍摄的这张自然彩色图像(上图)显示了南澳大利亚海岸附近的浮游植物群。但是,仅凭卫星图像,科学家们还无法确定是哪种浮游植物构成了像这样的水华。PACE 的高光谱OCI(海洋色彩仪器)将测量海洋和其他水体的紫外线、可见光和近红外线光谱。这将使科学家能够跟踪浮游植物的分布情况,并首次从太空中确定每天在全球范围内出现的浮游植物群落。科学家和沿海资源管理者可以利用这些数据帮助预测渔业健康状况、跟踪有害藻类的繁殖情况并确定海洋环境的变化。该航天器还携带了两台偏振计仪器,用于探测阳光如何与大气中的微粒相互作用。这些数据可以为研究人员提供有关大气气溶胶和云层特性以及地方、区域和全球范围内空气质量的新信息。几十年来,美国国家航空航天局(NASA)一直在从太空研究气溶胶观测它们的位置和丰度但是,AACE 及其SPEXone和HARP2极地测量仪将改变这一游戏规则。这些仪器将揭示气溶胶的形状和大小,帮助科学家回答气溶胶从何而来以及如何影响地球系统其他部分的问题。美国国家航空航天局的 PACE(浮游生物、气溶胶、云层、海洋生态系统)航天器在地球上空运行。图片来源:NASA GSFC2 月 8 日发射后,航天器成功地与地球上的地面站取得了联系,为团队提供了有关其发射后状态、健康、运行和能力的早期读数。在未来几周内,将对 PACE 的发射后评估进行全面审查,以确定其是否已做好进入任务运行阶段的准备。照片由 NASA 提供。美国国家航空航天局地球观测站的图片,由 Lauren Dauphin 使用美国地质调查局的 Landsat 数据拍摄。视频:Ryan Fitzgibbons (KBRWyle)/NASA 戈达德太空飞行中心/科学可视化工作室。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究认为火星的地下水补给量极少 与地球的水动力学存在巨大差异

研究认为火星的地下水补给量极少 与地球的水动力学存在巨大差异 德克萨斯大学奥斯汀分校的一名研究生利用一系列方法从计算机模型到简单的信封背面计算对含水层的地下水补给动态进行建模,从而发现了这一发现。2021年8月阿联酋火星任务拍摄的火星真面目。图片来源:Kevin M. Gill火星上的地下水补给无论复杂程度如何,结果都趋于一致平均每年地下水补给量只有微不足道的 0.03 毫米。这意味着,在模型中,无论哪里降雨,平均每年只有 0.03 毫米的雨水可以进入地下蓄水层,并依然形成今天地球上的地貌。相比之下,为圣安东尼奥供水的特尼狄和爱德华兹-特尼狄高原含水层的地下水年补给率一般为每年 2.5 至 50 毫米,约为研究人员计算的火星含水层补给率的 80 至 1600 倍。第一作者、杰克逊地球科学学院博士生埃里克-希亚特(Eric Hiatt)说,地下水流速如此之低有多种潜在原因。下雨时,水可能主要以径流的形式冲过火星地表。也可能根本就没下什么雨。对火星气候和探索的影响这些发现有助于科学家确定早期火星上能够产生降雨的气候条件。这些发现还表明,红色星球上的水环境与今天地球上的水环境截然不同。希亚特说:"事实上,地下水并不是一个重要的过程,这可能意味着还有其他东西在起作用。这可能放大了径流的重要性,也可能意味着火星上没有下那么多雨。但这与我们在地球上思考[水]的方式有着根本的不同。"该研究成果发表在《Icarus》杂志上。论文的共同作者是杰克逊学院的博士生穆罕默德-阿夫扎尔-沙达布(Mohammad Afzal Shadab),以及学院教师肖恩-古利克(Sean Gulick)、蒂莫西-古奇(Timothy Goudge)和马克-赫塞(Marc Hesse)。主要作者、德克萨斯大学奥斯汀分校杰克逊地球科学学院博士生埃里克-希亚特(Eric Hiatt)与火星地球仪。图片来源:德克萨斯大学奥斯汀分校/杰克逊地球科学学院研究中使用的模型是通过模拟地下水在"稳定状态"下的流动,在这种状态下,流入含水层的水和流出含水层的水是平衡的。然后,科学家改变影响水流的参数,例如降雨地点或岩石的平均孔隙率,并观察要保持稳定状态还需要改变哪些变量,以及这些费用的合理性。虽然其他研究人员已经使用类似技术模拟了火星上的地下水流,但这一模型是首次将 30 多亿年前火星表面的希腊、阿尔盖尔和伯勒里斯盆地中存在的海洋的影响纳入其中。这项研究还纳入了卫星收集的现代地形数据。希亚特说,现代地貌仍然保留着地球上最古老、最具影响力的地形特征之一北半球(低地)与南半球(高地)之间的极端高差,即所谓的"大二分法"。二分法保留了过去地下水上涌的迹象,即地下水从含水层上升到地表。研究人员利用这些过去上升流事件的地质标记来评估不同的模型输出结果。在不同的模型中,研究人员发现每年 0.03 毫米的平均地下水补给率与已知的地质记录最为吻合。这项研究不仅仅是为了了解红色星球的过去。它对未来的火星探索也有影响。希亚特说,了解地下水流有助于知道今天在哪里可以找到水。无论你是在寻找远古生命的迹象,还是在努力维持人类探险者的生命,抑或是在制造火箭燃料返回地球家园,知道水最有可能在哪里都是至关重要的。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人