什么是布局,成功的人都是如何布局?

什么是布局,成功的人都是如何布局? 乌鸦哥的回答 成功的人都是布局高手,成功的背后其实只有一个秘密,就是看你会不会布局。 这个世界其实就是各种的局,你要么是布局者,要么是入局者,你在哪个层级决定了成为什么样的人,这跟努力是没有多大关系的。 给大家讲一下高手是怎么布局的,掌握这些原理你也可以成为高手。 布局需要练习,练习需要学习,高手在训练的时候练什么学? 就俩字“套路” 你可以练习和学习的套路就是思维模式,如果你100个思维模式,你就能拥有普世智慧。如果你想提高自己的认知能力,就要学习高品质的思维模式,把它培植到大脑里面。 一、一个人死磕永远搞不大,比如你的货卖不出去,是因为只有你一个人在卖,如何找1000个人帮你卖货如何?那就要学会分钱,学会这一点,人才皆为你所用。 二、找到支点,找到杠杆,所有的思路它都有支点,找到这个关键点就会很容易突破。 三、高手都是善于玩资源配置的,不管你做什么生意,你的客户都已经在别人的鱼塘里,那么如何借用别人的鱼塘,别人还心甘情愿,这是你所要思考的。很多空手套白狼的经典案例就是用的这个思维。 四、结果为导向,先推倒,再推倒,在演绎,在测试,最后升华。 五、先从一个点到一条线,再到一个面,就会形成一个底,变成一个行,最后就有一个物,站得高才能看得更远。 六、学会深度思考,要聚焦,不要讲明白一件事,要搞明白一件事情,搞不明白就不要睡觉。 七、把获取信息差的习惯永远放在第一位,这个世界上永远存在信息差,抽出更多的时间用来读书学习,混更高端的圈子,所有高手都喜欢读书学习,从中获取别人无法知道的更多的信息差、知识差和思维差。 八、以不变应万变的智慧体系,变则通,通则灵,根据趋势时势,顺势而为,快速迎合当下消费群体。 via 知乎热榜 (author: 乌鸦哥)

相关推荐

封面图片

本站教授的是现在广泛使用于网站布局领域的CSS基础。

本站教授的是现在广泛使用于网站布局领域的CSS基础。 我们假设你已经掌握了CSS的选择器、属性和值。并且你可能已经对布局有一定了解,即使亲自去写的话还是会很苦恼。如果你想要从头开始学习HTML和CSS,那么你可以看下。不然的话,让我们看看我们是否可以让你在下一个项目少一些烦恼。 | #教程

封面图片

像高手一样思考:让你脱颖而出的100个顶级思维模型

像高手一样思考:让你脱颖而出的100个顶级思维模型 简介:像高手一样思考:让你脱颖而出的100个顶级思维模型是一本针对像高手一样思考:让你脱颖而出的100个顶级思维模型主题的优质学习资料,结合理论与实践,从不同角度剖析内容,帮助学习者快速掌握核心要点,并提升实际应用能力。 标签: #像高#学习#成长#进步 文件大小NG 链接:https://pan.quark.cn/s/33776b7323fb

封面图片

副业网赚思维

网赚项目分享,前沿情报,高手思维,同行力量,持续实战 上千条赚钱线索,总有一个机会适合你 提炼高手生财思维,有钱人想的真不一样 提炼自上千位实战高手亲身经验 找信息先找人,先赚一块,概率思维,偏见思维,异常值思维,矩阵思维,蓝海思维,试错思维,花钱思维,分钱思维,逆向思维...... 本频道所有资源均来自网络,仅供个人学习使用,请勿用于其他用途

封面图片

大学生初入职场该注意什么?

大学生初入职场该注意什么? 柒年的回答 老生常谈的一个问题,摒弃学生思维,公司招你进来是干活的,不是过来学东西的,有些事情是你的工作职责,是你需要做决定的,怎么说保持学习的心态是好的,但不能只保持学习的心态,来公司是工作的,而不是来学习的,还有就是不要被表面所蒙蔽,没有不要过分的相信自己的同事,有些话说己知道就好,不要说信别人去和别人吐槽八卦一些话。 via 知乎热榜 (author: 柒年)

封面图片

如何在数学中进行刻意练习?

如何在数学中进行刻意练习? Thoughts Memo的回答 针对学习数学证明的刻意练习 针对数学的刻意练习是什么样的?我具体指的是,自学本科和研究生阶段以证明为主的数学知识。(所以我不考虑高中之前更早阶段的数学,大学中证明成分较少的微积分和线性代数,数学竞赛,以及数学研究。我对数学研究很感兴趣,但这个问题似乎更难讨论。为什么不考虑数学竞赛?因为那些题目对我来说挺无聊的。) 对刻意练习的认知:Ericsson 的研究可信吗?值得我们信任吗?我认为:我们不一定要信他,但他的研究对错与否也没什么关系。我看中的是这个研究是否足够合理,我能否从这个研究中学到新东西。当将其应用到学习之后,我们可以问:「利用刻意练习的理论,我们是否在某个技能上突飞猛进?」换句话说,我们不是把他的研究作为一个必须坚持的结论或信念,而是当作需要斟酌的假说。 数学是「高度发展的领域」吗? Ericsson 在《刻意练习》一书中,以及 Cedric Chin [1] 都声称,数学是非常适合刻意练习的领域。但我怎么看不出来呢?我看到书里的例子都是网球、记忆数字、音乐之类。 我翻遍了《刻意练习》整本书,里面确实有一些关于数学家及其特质的讨论,但整本书都没有涉及学习数学的具体技巧,也没有描述数学家会做什么样的「刻意练习」。 在数学中应用刻意练习的困难之处 可以参考 https://commoncog.com/blog/the-problems-with-deliberate-practice/ 中关于「在缺乏成熟训练方法的领域中,练习会遇到哪些问题?」的讨论。 我觉得数学有「定义不良的子技能」这个问题。在本科数学中,我们很难明确界定具体包含哪些技能。理解证明的能力?解决问题的能力?我觉得这些技能作为技能分类太过宽泛了。也许可以细分为「解决特定类型问题的能力」。然而教科书上的练习并没有标注练习的各项属性,因此我们很难有针对性地选择题目来提高特定技能。 本科水平的证明题太长了,你没办法进行「达到 95% 的准确度」之类的练习你无法在短时间内完成足够多的练习来达到这个标准。 Kathy Sierra 在 Badass: Making Users Awesome 这本书中用一系列插图来指导如何拆解技能(特别是最后一张图)。所以对于证明题,我觉得可以这样做来实现刻意练习的(也是经常做的),那就是放松一些假设条件,让问题更简单,或者证明一个特例。不过已经有人这样做了。另一种简化方法是先看一眼解答,然后尝试自己解决。这两种方法都是常见的学习技巧。 「缺乏反馈」这是自学数学时面临的另一个重要挑战。获取反馈的唯一办法,是查看答案,或者在数学 Stack Overflow 上发帖求助。针对特定书目/领域的 Discord 服务器可能解决这个问题,但反馈会很慢。这跟如果概念的现有解释质量低下,费曼学习法起不了作用[1]一样(如果现存的解释质量很糟糕,你甚至不能使用费曼技巧来获取假反馈)。 但我们也有 Anki 这样的工具。 在某种程度上,随着数学水平的提高,学习者确实能够逐渐培养出自我反馈能力,例如判断数学推导是否正确。但是我觉得这样的反馈仍然不同于刻意练习讨论的那种。 我觉得可以设计一些能够提供良好反馈的多选题。你可以设定「在这道多选题上达到 95% 的正确率」之类的目标。 刻意练习定义的组成成分 https://www.lesswrong.com/tag/deliberate-practice 让我们看看可以刻意练习的要求有哪些: ● 有目的的练习(「挑战自我获得进步」[1]): ● 「明白何为优秀」/「有一个技能理论,并按照这个理论来指导练习」:关于什么才算是一个理论,我的理解还不够清晰。比如,「解决大量问题,你最终就会擅长数学」这样的说法恐怕并不能算作一个理论(天哪,这听起来更像是一种过于简单化的练习方法!)。《刻意练习》这本书主要强调了接触专家的重要性,据说专家能够通过观察你的表现来判断你需要在哪些方面进行改进。 「这就是在任何领域中提升自己的基本方法:尽可能地接近刻意练习。如果你所处的领域可以实现刻意练习,那你就要做刻意练习。如果实现不了,那就要尽可能应用刻意练习的原则。这通常可以归结为一种带有额外步骤的有目的练习:首先,找出表现卓越的专家;然后,弄清楚是什么让他们如此出色;最后,设计能让你也做到这一点的训练方法。」[1]从某种意义上说,「尝试证明一个定理,遇到困难,翻书寻找提示,然后找出你缺少的洞察力或者策略,并将其记录在 Anki 里」,这种方法正是这个原则在数学学习中的具体体现。 另外值得一提的是,刻意练习常常被视为防止技能停滞不前的一种方式;但在数学学习中,你其实不用太担心技能停滞的问题!只要你在不断学习新的数学知识,解决以前没有遇到过的问题,并且没有忘得太快(间隔重复在这方面非常有帮助),你就可以确信自己一直在进步。 目标 有一件事要弄明白,那就是为什么我们要「提高数学能力」?我们的最终目标究竟是什么?根据不同的目标,我认为我们应该采取的学习和练习方法也会有所不同。 与竞技象棋或游泳等领域不同,数学学习并没有一个明确的、单一的优化目标(尽管即使在游泳这样的运动中,你也可以追求速度以外的其他目标)。因此,在数学学习中,我们必须首先明确自己的学习目标。 关于我个人的数学学习方式,有一点似乎与常规不同:当我学完一个主题后,我通常不会刻意通过大量练习题来「进一步提高」。但也许我应该这样做?我的自然倾向是转向其他引起我好奇心的新主题。只有当某些情况提醒我时,比如遇到一个具体的问题或困难,我才会回头复习之前的主题。 另一个难点是理解什么是「所期待」的掌握程度,比如说,对于任意一个重大定理,只要听见名字,就能坐下来默写一遍证明,应该达到这样的水平吗?还是说,如果一个人在证明过程中遇到困难,但最终通过几个小时的努力(依靠记忆和一般的解题经验)成功完成证明,这样也可以接受?学界对于一个数学家应该掌握哪些知识并没有明确的标准。 我的一些目标: ● 我希望能够理解某些数学概念或结论背后的缘由。这个目标某种程度上取决于你对解释水平的要求。 ● 能够识别出某个场景下有哪些数学知识与其有关,并将其应用。 参见 参考 1. ↑ 1.01.11.21.31.41.51.6 Peak: secrets from the new science of expertise. Anders Ericsson, Robert Pool. 外部链接 一些链接(我觉得这些链接没啥用,但我也只能找到这么多了) ● https://news.ycombinator.com/item?id=2515455 ● https://www.reddit.com/r/math/comments/71saol/what_does_deliberate_practice_mean_for_math/ ● https://matheducators.stackexchange.com/questions/11104/how-can-i-implement-the-principles-of-deliberate-practise-in-my-mathematical-stu Thoughts Memo 汉化组译制 感谢主要译者 Shom,校对 Jarrett Ye 原文:Deliberate practice for learning proof-based math 相关文章 Thoughts Memo:用间隔重复系统来看穿数学概念Thoughts Memo:我重塑大脑,使其精通数学叶峻峣:规律记忆练习的承载能力;刻意练习和心流之间的张力叶峻峣:刻意练习,来自 Ericsson via 知乎热榜 (author: Thoughts Memo)

封面图片

内容简介本系列包括《隐形人格:思维和行为背后的人格奥秘》《深度影响:如何自然地赢得他人的心》《爱自己的人自带光芒:圣母型人格自救

内容简介 本系列包括《隐形人格:思维和行为背后的人格奥秘》《深度影响:如何自然地赢得他人的心》《爱自己的人自带光芒:圣母型人格自救手册》《恰到好处的挫折》。 《隐形人格:思维和行为背后的人格奥秘》:从人际互动的角度,发现思维和行为背后的人格奥秘!知识管理专家萧秋水作序,知识IP大本营创始人秋叶推荐! 《深度影响:如何自然地赢得他人的心》:本书提供75条简单可行的建议,教你增强受喜爱和/或受尊敬程度,实现影响力类型的自然转化,最终成为任何你想要成为的人。 《爱自己的人自带光芒:圣母型人格自救手册》:你有权表达自己的感受、意见及价值观,你有权做自己,你有权说“不”,你有权犯错误,你有权把自己放在第一位,你有权不依赖别人的认可。 《恰到好处的挫折》:亲爱的,人生由一个又一个的意外构成,而应对这些意外的方式完全取决于我们自己,并将最终决定我们的一生。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人