事件视界望远镜计划5月12日发布历史首张对银心人马座A*黑洞的可视化图像,是综合全球多地天文台于2017年4月的一段连续观测生成

事件视界望远镜计划5月12日发布历史首张对银心人马座A*黑洞的可视化图像,是综合全球多地天文台于2017年4月的一段连续观测生成。成像观测结果经特征聚类形成下方四套子图,再合并成平均值大图。 人马座A*位于银河系中央,距地球2.7万光年,质量是太阳的四百万倍。 研究人员形容,银心黑洞质量小、周围吸积气体公转周期短至仅几分钟,因此相比此前周期长达数日的M87*黑洞(2019年已发表图像)更难观测分析。 研究人员说,人马座A*与M87*虽然大小悬殊、所处星系也不同,但两者视觉形象高度相似,体现出广义相对论对不同尺度黑洞都能较好适用。 (Event Horizon Telescope,中国科学院上海天文台)

相关推荐

封面图片

甚大望远镜发布人马座C的最新图片 靠近银河系中心黑洞

甚大望远镜发布人马座C的最新图片 靠近银河系中心黑洞 日前由欧洲南方天文台运营的甚大望远镜 (Very Large Telescope,位于智利) 发布了一张银河系中心附近的新图片。这张图片的区域是在人马座 C,不过这里靠近银河系中心黑洞 (即人马座 A*),所以有密密麻麻的恒星被银心黑洞吸引聚集在这里。 PC版: 手机版:

封面图片

事件视界望远镜(EHT)公布银河系中心黑洞新照片 展示银心黑洞强大的旋转磁场

事件视界望远镜(EHT)公布银河系中心黑洞新照片 展示银心黑洞强大的旋转磁场 2021 年该科学团队最终发布了银心黑洞即人马座 A* 的照片,为我们展示我们所在的银河系的中央这颗比较安静的黑洞照片。不过彼时这些黑洞的照片相对来说都比较模糊,像是一个马赛克版甜甜圈,但随着科学团队改进观测方法更清晰的偏振光版黑洞照片发布,首先被发布的依然是 M87 * 黑洞,今天研究人员发布了两篇新论文展示银心黑洞的偏振光版。在这个新照片中我们可以清晰看到黑洞周围吸积盘的样子,吸积盘的光线 (包括可见光和不可见光) 主要是物质在跌落到黑洞时速度逐渐增加,并跟着旋转的黑洞一起沿着螺旋路径跌入,在跌入过程中物质之间高速摩擦、碰撞并转换为热能以及光线。其中亮度越高的区域代表物质密度更集中并且碰撞更剧烈,不过理论上说所有靠近黑洞的物质最终都会被强大的潮汐力撕扯为碎片甚至原子级别,所以黑洞的事件视界周围是难以看到完整物体的。下图是人马座 A* 的最新照片:下图是 M87* 和人马座 A* 的对比: ... PC版: 手机版:

封面图片

天文学家实时观测黑洞的苏醒

天文学家实时观测黑洞的苏醒 2019 年末,此前不显眼的室女座星系 SDSS1335+0728 突然变得明亮许多。天文学家随后利用太空和地面望远镜跟踪了其亮度变化。根据发表在《Astronomy & Astrophysics》期刊上的研究,天文学家认为我们正在实时目睹一个超大质量黑洞的苏醒。超新星爆发等天文现象会让星系变得明亮,但通常只会持续几十天,最多数百天,而 SDSS1335+0728 的变亮持续至今,已有四年多时间,还在越来越亮。该星系距离地球 3 亿光年,2019 年 12 月加州 Zwicky Transient Facility 天文台观测到了它突然变亮,后续观测发现其中红外波长亮度增加了一倍,紫外线亮度增加了四倍,X 射线范围亮度至少增加 10 倍。变亮原因被认为是“活跃星系核”的形成,即星系中心的巨大黑洞在消耗周围的物质。 via Solidot

封面图片

天文学家在遥远的球状星团中探测到中等质量黑洞的最有力证据

天文学家在遥远的球状星团中探测到中等质量黑洞的最有力证据 一个国际天文学家小组研究了用哈勃太空望远镜拍摄的 500 多张半人马座欧米茄球状星团的图像,这项工作原本是为了校准哈勃的仪器。然而,他们在这个距离地球 17000 光年的星团中的数百万颗恒星中发现了一些意想不到的东西。德国马克斯-普朗克天文学研究所研究员、《自然》杂志发表的一项新研究的负责人马克西米利安-哈伯勒解释说,他的团队发现了七颗"不应该存在"的恒星。这些恒星的运动速度非常快,它们应该可以摆脱星团的引力影响。哈伯勒说:"最有可能的解释是,一个非常巨大的天体正在对这些恒星产生引力,使它们紧贴着中心。"唯一足以产生这种引力的现象是黑洞,其质量估计至少是太阳的 8200 倍。这个仍然未知的天体很可能是一个中等质量黑洞(IMBH),这种类型的黑洞被认为是黑洞演化研究中的"缺失环节"。IMBH是一种非常难以捉摸的空间现象,它介于人马座A*这样的超大质量黑洞和重量不足100个太阳质量的"轻量级"黑洞之间。之前的研究已经表明,半人马座欧米茄星团可能存在一个IMBH,但由海伯勒领导的新研究提供了最直接的证据,证明有一个中等质量的黑洞在影响着星团中的一些恒星。迄今为止,我们在宇宙中发现的 IMBH 候选者寥寥无几,这意味着半人马座欧米茄的黑洞可能是我们"宇宙邻域"中 IMBH 的最佳范例。现在还需要进一步的研究来确认这个黑洞是否真的存在,确定它的确切质量,并找出其他与众不同的特征。此外,半人马座欧米茄星的超大质量黑洞(430 万太阳质量)比位于银河系中心 26000 光年之外的人马座 A* 更接近地球。这也是除了上述人马座A*之外,已知的唯一一个黑洞通过引力影响恒星群的案例。 ... PC版: 手机版:

封面图片

澳州天文学家发现迄今成长最快的黑洞

澳州天文学家发现迄今成长最快的黑洞 澳大利亚科研人员称发现了迄今已知成长最快的黑洞,它每天吞噬掉的物质质量相当于一个太阳。 新华社星期二(2月20日)报道,澳大利亚国立大学研究人员领衔的团队日前在英国《自然·天文学》杂志上发表论文说,这个黑洞的质量高达太阳的170亿倍,距离地球超过120亿光年。 欧洲南方天文台发布的公报指出,这个黑洞所在的类星体代号为J0529-4351,不仅是迄今观测到的最明亮类星体,也是迄今观测到的最明亮天体。 据介绍,这个黑洞的吸积盘直径达7光年,超过太阳系到其相邻恒星系统半人马座阿尔法星系的距离。 论文第一作者、澳大利亚国立大学天文学和天体物理学研究学院副教授克里斯蒂安·沃尔夫说,这个黑洞“令人难以置信的成长速度意味着光和热的大量释放”,因此它所在的类星体也成为“宇宙中迄今已知的最明亮物体”。 事实上,J0529-4351一直掩藏在“众目睽睽之下”。之前,研究人员利用电脑模型分析欧洲航天局“盖亚”空间探测器采集的相关数据时,错将J0529-4351识别为一颗恒星,直到最近通过地面望远镜观测才将其确定为类星体。 类星体是活动星系核,由其中心的超大质量黑洞所驱动。当黑洞周围的气体被吞噬时会形成漩涡状吸积盘,巨大的引力势在吸积盘上得以释放,转化为热能和电磁辐射,使得类星体异常明亮。 2024年2月20日 10:09 PM

封面图片

人马座A*黑洞以及更多:天文学家利用TDE帮助探索宇宙中曾经无法追踪的领域

人马座A*黑洞以及更多:天文学家利用TDE帮助探索宇宙中曾经无法追踪的领域 对于不幸被超大型黑洞吞噬的恒星来说,这是一个灾难性的毁灭性结局,但对于科学家来说却是幸运的,因为他们现在有机会探测星系中原本处于休眠状态的中心。TDE 照亮探索的道路顾名思义,黑洞本身不会发出任何光,因此研究人员很难观测到它们。但是当一颗恒星足够接近一个超大质量黑洞时,它就会被黑洞巨大的潮汐引力场摧毁,这种相互作用实际上就是地球与月球潮汐相互作用的极端例子。一些被潮汐摧毁的物质会掉入黑洞,形成一个非常热、非常亮的物质盘。这个过程被称为潮汐破坏事件(TDE),它提供了一个光源,科学家可以用强大的望远镜观察和分析。TDEs比较罕见据预测,在一个特定的星系中,大约每10,000到100,000年发生一次。通常每年能探测到一到二十次TDEs,但随着新技术的出现,如目前正在智利建造的维拉-C-鲁宾天文台,预计在未来几年内将观测到数百次TDEs。这些功能强大的天文台扫描夜空,寻找上升和下降的光源,从而"勘测"宇宙中的时变天文现象。利用这些观测,天体物理学家可以对 TDEs 进行研究,以估计 SMBHs 及其摧毁的恒星的性质。研究人员试图了解的事情之一是恒星和 SMBH 的质量。虽然有一种模型被经常使用,但最近又开发出了一种新的模型,目前正在进行测试。分析模型的出现吸积率即恒星的恒星物质在TDE期间落回SMBH的速率揭示了恒星和SMBH的重要特征,例如它们的质量。最精确的计算方法是进行流体力学数值模拟,利用计算机分析TDE中潮汐破坏的物质雨点般落到黑洞上时的气体动力学。这种技术虽然精确,但成本高昂,研究人员计算一个 TDE 可能需要数周到数月的时间。近几十年来,物理学家们设计出了计算吸积率的分析模型。这些模型为了解扰乱恒星和黑洞的性质提供了一种高效、经济的方法,但其近似值的准确性仍存在不确定性。目前存在的分析模型屈指可数,其中最著名的可能要数"冻结在黑洞中"近似模型了;这一名称源于这样一个事实,即落在黑洞上的碎片的轨道周期是在与黑洞的一个特定距离(称为潮汐半径)上确定的,或者说是"冻结在黑洞中"。这一模型由莱西、汤斯和霍伦巴赫于1982年提出,洛达托、金和普林格于2009年对其进行了扩展,认为大质量恒星的吸积率在1到10年的时间范围内达到峰值,具体取决于恒星的质量。这意味着,如果在夜空中观察,一个星源最初可能会变亮、达到峰值,然后随着时间的推移逐渐减弱,时间尺度可达数年之久。新的前进之路锡拉丘兹大学物理学教授埃里克-考夫林(Eric Coughlin)和利兹大学理论天体物理学副教授克里斯-尼克松(Chris Nixon)在2022年提出了一个新模型,简称CN22模型,它将TDE的峰值时间尺度确定为恒星性质和黑洞质量的函数。根据这个新模型,他们恢复了TDE的峰值时间尺度和吸积率,与一些流体力学模拟的结果一致,但这个模型更广泛的影响以及它对更广泛的恒星类型(包括恒星的质量和年龄)的预测还没有完全阐明。为了在更广泛的背景下更好地描述和理解这一模型的预测,由物理系博士生 Ananya Bandopadhyay 带领的锡拉丘兹大学研究团队开展了一项研究,分析 CN22 模型的影响,并针对不同类型的恒星和不同质量的 SMBH 进行测试。研究小组的研究成果发表在《天体物理学杂志通讯》上。除了第一作者Bandopadhyay之外,共同作者还包括Coughlin、Nixon、物理系的本科生和研究生以及锡拉丘兹市教育局(SCSD)的学生。锡拉丘兹市教育局学生的参与是通过锡拉丘兹大学物理研究(SURPh)项目实现的,该项目是一个为期六周的带薪实习项目,当地高中生与文理学院物理系的师生一起参与前沿研究。在2022年和2023年的夏天,南加州大学的学生与锡拉丘兹大学的物理学家合作开展计算项目,测试CN22模型的有效性。他们使用名为"恒星天体物理学实验模块"的恒星演化代码来研究恒星的演化。利用这些剖面图,他们比较了"冻结"近似和 CN22 模型对一系列恒星质量和年龄的吸积率预测。他们还对一颗类太阳恒星被一个超大质量黑洞破坏的过程进行了流体力学数值模拟,以比较模型预测值和数值得出的吸积率。研究成果据 Bandopadhyay 称,研究小组发现 CN22 模型与流体力学模拟结果非常吻合。此外,也许最重要的一点是,研究发现TDE中吸积率的峰值时间尺度对被摧毁恒星的性质(质量和年龄)非常不敏感,对于像太阳这样被质量为人马座A*的黑洞摧毁的恒星来说,峰值时间尺度约为50天。这一结果最引人注目和最令人吃惊的是,"冻结在"模型做出了截然不同的预测。根据"冻结在"模型,同一 TDE 产生的增殖率将在两年的时间尺度上达到峰值,这与流体力学模拟的结果明显不符。Bandopadhyay说:"这推翻了以前关于TDE工作方式的观念,以及彻底摧毁恒星可能产生的瞬态类型。通过证实CN22模型的准确性,我们证明了这种分析方法可以大大加快对具有不同质量和年龄的恒星破坏的可观测特性的推断。"他们的研究还推翻了早先的观点,即TDEs可以用来解释在多年跨度上达到峰值和衰减的长持续时间光变曲线。此外,Coughlin 还指出,这篇论文验证了峰值回落率实际上与被破坏恒星的质量和年龄无关,几乎完全由 SMBH 的质量决定。"如果测量的是上升时间,那么可以直接窥探到的实际上是超大质量黑洞的属性,这是TDE物理学的目标,也就是利用TDE来说明黑洞的一些情况,"考夫林说。鉴于该论文对该领域的影响,美国天文学会邀请 Bandopadhyay 在 2024 年 1 月 11 日于新奥尔良举行的该学会第243次会议上介绍该团队的研究成果。展望未来,研究小组表示,通过证实CN22模型的准确性,这项研究为研究人员打开了一扇窗,使他们能够对TDEs做出可观测的预测,并根据现有的和即将到来的探测结果对其进行检验。通过合作和智慧,锡拉丘兹大学的研究人员正在揭示黑洞物理学的细节,并帮助探索遥远宇宙中曾经无法追踪的领域。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人