美国人工智能取得突破性进展的原因

None

相关推荐

封面图片

人工智能在突破性研究中推断出暗能量的影响和特性

人工智能在突破性研究中推断出暗能量的影响和特性 暗能量是加速宇宙膨胀的神秘力量,被认为占宇宙内容的70%左右(暗物质是看不见的东西,它的引力牵引着星系,占25%,正常物质只占5%)。主要作者尼尔-杰弗里(Niall Jeffrey)博士(UCL 物理与天文学)说:"利用人工智能从计算机模拟的宇宙中学习,我们对宇宙关键属性的估计精度提高了两倍。如果没有这些新技术,要实现这一改进,我们需要四倍的数据量。这相当于再绘制3亿个星系的地图"。共同作者洛恩-怀特威博士(伦敦大学物理与天文学学院)说:"我们的发现符合目前对暗能量的最佳预测,即暗能量是一个'宇宙常数',其值不会随空间或时间而变化。不过,它们也为正确的不同解释留出了灵活性。例如,我们的引力理论仍然可能是错误的。"从其中一个模拟宇宙中得到的物质地图。图中最亮的区域表示暗物质密度最高的区域。这些区域与超星系团相对应。深色的几乎是黑色的斑块是宇宙空洞,即星系团之间的大片空隙。资料来源:尼尔-杰弗里等人完善宇宙学模型与之前于2021年首次发表的暗能量勘测图分析结果一致,这些研究结果表明,宇宙中的物质比爱因斯坦广义相对论所预测的分布得更平滑更少有块状的情况。不过,与之前的分析相比,这项研究的差异并不那么显著,因为误差条更大。暗能量勘测图是通过一种叫做弱引力透镜的方法获得的,即观察来自遥远星系的光线在到达地球的途中是如何被干扰物质的引力弯曲的。这项合作分析了 1 亿个星系形状的扭曲,从而推断出这些星系前景中所有物质(包括暗物质和可见物质)的分布情况。由此绘制的地图覆盖了南半球四分之一的天空。在这项新研究中,研究人员利用英国政府资助的超级计算机,根据暗能量调查物质地图的数据,对不同的宇宙进行了模拟。每个模拟都有不同的宇宙数学模型作为基础。研究人员从这些模拟中创建了物质图谱。一个机器学习模型被用来提取这些地图中与宇宙学模型相关的信息。第二个机器学习工具从许多不同宇宙学模型的模拟宇宙实例中学习,查看真实观测数据,并给出任何宇宙学模型成为我们宇宙真实模型的几率。与以前的方法相比,这项新技术使研究人员能够使用更多的地图信息。模拟在 DiRAC 高性能计算(HPC)设施上运行,该设施由英国科技设施委员会(STFC)资助。宇宙学的未来探索下一阶段的暗宇宙项目包括去年夏天启动的欧洲航天局(ESA)欧几里得(Euclid)任务将大大增加我们所掌握的有关宇宙大尺度结构的数据量,帮助研究人员确定宇宙出人意料的平滑是否是当前宇宙学模型错误的标志,或者是否有其他解释。目前,这种平滑性与根据宇宙微波背景(CMB)宇宙大爆炸时留下的光线分析得出的预测结果不符。暗能量勘测合作项目由美国能源部费米国家加速器实验室(Fermilab)主办,来自七个国家 25 个机构的 400 多名科学家参与其中。该合作项目利用世界上功能最强大的数码相机之一5.7亿像素暗能量相机(Dark Energy Camera)在六年时间里(从2013年到2019年)拍摄的夜空照片,对数以亿计的星系进行了编目。该相机的光学校正器由 UCL 制造,安装在智利国家科学基金会 Cerro Tololo 美洲天文台的望远镜上。编译自:ScitechDaily ... PC版: 手机版:

封面图片

突破性人工智能利用大脑数据预测小鼠运动 准确率高达95%

突破性人工智能利用大脑数据预测小鼠运动 准确率高达95% 一种用于预测行为状态的新型"端到端"深度学习方法使用了无需预处理或预先指定特征的全皮层功能成像。该方法由医科学生梶冈武弘(AJIOKA Takehiro)和神户大学高见彻(TAKUMI Toru)领导的团队开发,他们还能确定哪些大脑区域与算法最相关(如图)。提取这些信息的能力为未来开发脑机接口奠定了基础。资料来源:梶冈武弘要制作脑机接口,就必须了解大脑信号和受影响的动作之间的关系。这就是所谓的"神经解码",这一领域的大部分研究都是通过植入大脑的电极来测量脑细胞的电活动。另一方面,功能成像技术,如核磁共振成像或钙成像,可以监测整个大脑,并通过代理数据使活跃的大脑区域清晰可见。其中,钙成像速度更快,空间分辨率更高。但在神经解码工作中,这些数据源仍未得到利用。其中一个特别的障碍是需要对数据进行预处理,如去除噪音或确定感兴趣的区域,因此很难为多种不同行为的神经解码设计出通用的程序。神户大学医科学生 Ajioka Takehiro 利用神经科学家 Takumi Toru 领导的团队的跨学科专业知识解决了这一问题。Ajioka 说:"我们在基于 VR 的小鼠实时成像和运动跟踪系统以及深度学习技术方面的经验,让我们能够探索'端到端'深度学习方法,这意味着它们不需要预处理或预先指定的特征,从而可以评估整个皮层的神经解码信息。他们将两种不同的深度学习算法(一种针对空间模式,一种针对时间模式)结合到小鼠在跑步机上休息或奔跑的全皮层胶片数据中,并训练他们的人工智能模型从皮层图像数据中准确预测小鼠是在移动还是在休息。"神户大学的研究人员在《PLoS 计算生物学》杂志上报告说,他们的模型预测动物真实行为状态的准确率高达 95%,而无需去除噪声或预先定义感兴趣的区域。此外,他们的模型仅凭 0.17 秒的数据就做出了这些准确的预测,这意味着他们可以达到接近实时的速度。而且,这种方法适用于五个不同的个体,这表明该模型可以过滤掉个体特征。然后,神经科学家们通过删除部分数据并观察模型在该状态下的表现,确定图像数据中哪些部分对预测起主要作用。预测结果越差,数据就越重要。梶冈武弘释说:"我们的模型能够识别行为分类的关键皮层区域,这尤其令人兴奋,因为它打开了深度学习技术'黑盒'的盖子。"神户大学团队建立了一种可通用的技术,从整个皮层功能成像数据中识别行为状态,并开发了一种技术来识别预测是基于数据的哪些部分。这项研究为进一步开发能够利用无创脑成像进行近实时行为解码的脑机接口奠定了基础。编译自:ScitechDaily ... PC版: 手机版:

封面图片

突破性人工智能方法以10倍的速度识别帕金森病新疗法

突破性人工智能方法以10倍的速度识别帕金森病新疗法 研究人员利用人工智能方法大大加快了发现帕金森病治疗方法的速度。剑桥大学的研究人员设计并使用了一种基于人工智能的策略,以确定能够阻止α-突触核蛋白(帕金森病的特征蛋白)凝结或聚集的化合物。研究小组利用机器学习技术快速筛选了包含数百万个条目的化学库,并确定了五种高效力化合物供进一步研究。全世界有 600 多万人受到帕金森病的影响,预计到 2040 年,这一数字将增加两倍。目前还没有改变病情的治疗方法。筛选候选药物的大型化学文库需要在对患者进行潜在治疗测试之前进行耗费大量时间和金钱,而且往往不成功。利用机器学习提高筛选效率利用机器学习,研究人员能够将初步筛选过程加快十倍,成本降低一千倍,这意味着帕金森病的潜在治疗方法能够更快地到达患者手中。研究结果发表在《自然-化学生物学》(Nature Chemical Biology)杂志上。帕金森病是全球增长最快的神经系统疾病。在英国,现在每 37 个在世的人中就有一个会在一生中被诊断出患有帕金森病。除运动症状外,帕金森病还会影响胃肠道系统、神经系统、睡眠模式、情绪和认知能力,导致生活质量下降和严重残疾。蛋白质负责重要的细胞过程,但当人们患有帕金森病时,这些蛋白质就会失控,导致神经细胞死亡。当蛋白质折叠错误时,它们会形成称为路易体的异常团块,这些团块在脑细胞内堆积,使脑细胞无法正常运作。"寻找帕金森氏症潜在治疗方法的途径之一,需要确定能够抑制α-突触核蛋白聚集的小分子,而α-突触核蛋白是一种与该疾病密切相关的蛋白质,"领导这项研究的优素福-哈米德化学系米歇尔-文德斯科洛教授说。"但这是一个极其耗时的过程仅仅确定一个用于进一步测试的候选先导物就可能需要几个月甚至几年的时间"。虽然目前正在进行治疗帕金森病的临床试验,但没有任何改变病情的药物获得批准,这反映出无法直接针对导致该疾病的分子种类。这一直是帕金森病研究的一大障碍,因为缺乏识别正确分子靶点并与之接触的方法。这一技术差距严重阻碍了有效治疗方法的开发。计算药物筛选的创新剑桥大学团队开发了一种机器学习方法,通过对包含数百万种化合物的化学库进行筛选,找出能与淀粉样蛋白聚集体结合并阻止其增殖的小分子。然后,对少数排名靠前的化合物进行实验测试,以筛选出最有效的聚集抑制剂。从这些实验测试中获得的信息以迭代的方式反馈到机器学习模型中,这样经过几次迭代后,就能确定高效力的化合物。错构疾病中心联合主任文德斯科洛说:"我们不是通过实验进行筛选,而是通过计算进行筛选。"通过将我们从初步筛选中获得的知识与我们的机器学习模型相结合,我们能够对模型进行训练,以确定这些小分子上负责结合的特定区域,然后我们可以重新筛选,找到更有效的分子"。利用这种方法,剑桥大学团队开发出了针对聚集体表面口袋的化合物,这些口袋是聚集体本身指数级增殖的原因。这些化合物的效力是以前报道的化合物的数百倍,开发成本也低得多。文德斯科洛说:"机器学习对药物发现过程产生了真正的影响它加快了确定最有前途候选药物的整个过程。对我们来说,这意味着我们可以开始多个药物发现项目的工作,而不仅仅是一个。时间和成本的大幅降低使很多事情成为可能,这是一个令人兴奋的时刻。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

俄罗斯卫星通讯社季托夫:俄中商业合作取得突破性进展 ||

封面图片

IBM暂停招聘将被人工智能取代的职位

IBM暂停招聘将被人工智能取代的职位 IBM 首席执行官 Arvind Krishna 对彭博社表示,由于未来5年内30%的非面向客户的职位可能会被人工智能取代,该公司人力资源等后台职能部门的招聘将暂停。Arvind Krishna 称总计约有26000名员工从事这些不面向客户的职位。

封面图片

#中国企业 在生产用于 #人工智能 #芯片组 的高带宽内存方面取得进展

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人