贝佐斯和比尔·盖茨等科技大腕都在押注,几十年来未能实现的建造聚变反应堆的目标现在有望在几年内变成现实。

贝佐斯和比尔·盖茨等科技大腕都在押注,几十年来未能实现的建造聚变反应堆的目标现在有望在几年内变成现实。 作为一名投资者,升阳电脑联合创始人Khosla的看法是:“从财务角度来讲,你可能损失你投入的所有资金,也可能赚到相当于投资1,000倍的钱。这就是核聚变的数学原理。”

相关推荐

封面图片

#本周热读 贝佐斯和比尔·盖茨等科技大腕都在押注,几十年来未能实现的建造聚变反应堆的目标现在有望在几年内变成现实。

#本周热读 贝佐斯和比尔·盖茨等科技大腕都在押注,几十年来未能实现的建造聚变反应堆的目标现在有望在几年内变成现实。 一名投资者的看法是:“从财务角度来讲,你可能损失你投入的所有资金,也可能赚到相当于投资1,000倍的钱。这就是核聚变的数学原理。”

封面图片

【获 Google 比尔盖茨投资的聚变反应堆开始建设】不久前,由比尔盖茨、 Google 和许多私募股权公司等投资的核聚变研究公

【获 Google 比尔盖茨投资的聚变反应堆开始建设】不久前,由比尔盖茨、 Google 和许多私募股权公司等投资的核聚变研究公司 Commonwealth Fusion Systems(CFS),已经开始着手建设约 47 英亩的聚变反应堆。 #抽屉IT

封面图片

美国科学家宣布核聚变研究取得重大突破,首次实现了聚变反应的净能量增益,即从聚变实验中产生的能量多于输入激光的能量。

美国科学家宣布核聚变研究取得重大突破,首次实现了聚变反应的净能量增益,即从聚变实验中产生的能量多于输入激光的能量。 几十年来,物理学家一直在研究该技术,因为它有望成为近乎无限的清洁能源的潜在来源。 但专家们称,在核聚变能为普通家庭提供能源之前,还有一段路要走。

封面图片

新型钨反应堆让核聚变更接近现实

新型钨反应堆让核聚变更接近现实 对于那些不熟悉托卡马克的人来说,它本质上是一个甜甜圈形状的装置,利用强大的磁场来容纳和控制等离子体一种极热、带电的气态混合物,对于复制恒星中的聚变反应至关重要。由法国替代能源和原子能委员会(CEA)运营的 WEST(稳态托卡马克中的钨环境)反应堆处于这项研究的最前沿。这一突破取决于钨的使用,钨是灯泡灯丝中常见的灰白色金属。这种金属以其卓越的耐热性能而著称,能使等离子体达到难以置信的高温和高密度,而不会导致腔壁熔化。在创纪录的运行过程中,研究小组向 WEST 注入了 1.15 千兆焦耳的能量,使等离子体在大约 5000 万摄氏度的高温下持续燃烧,其温度是太阳核心温度的三倍多。普林斯顿等离子体物理实验室(PPPL)提供了专门的 X 射线诊断工具,用于精确测量 WEST 内的强等离子体条件,在这一成就中发挥了至关重要的作用。据普林斯顿等离子体物理实验室的路易斯-德尔加多-阿帕里西奥(Luis Delgado-Aparicio)说:"等离子体聚变界是最早利用混合光子计数技术监测等离子体动态的机构之一。"法国原子能委员会科学家泽维尔-利塔乌东(Xavier Litaudon)解释了为什么钨托卡马克的这一成就是如此重大的突破。"我们需要提供一种新的能源,而且这种能源应该是持续和永久的"。核聚变可以成为改变游戏规则的能源一种几乎取之不尽、用之不竭的清洁能源,没有任何放射性废物或碳排放。然而,要实现自持聚变反应,使其产生的能量大于消耗的能量,是一项巨大的挑战。从超高温等离子体中提取比启动和维持核聚变过程所需更多的能量,需要极高的温度和极长的约束时间。这就是为什么最近在 WEST 取得的突破如此令人期待。正如协调该实验的雷米-杜蒙(Remi Dumont)简明扼要地指出的那样"一个惊人的结果"。虽然人类的核聚变能源梦想还需要数年或数十年的时间才能实现,但像这样的里程碑式事件表明,我们正在一步步地接近它。主要的参与者也在加倍努力实现核聚变的承诺。微软公司与 Helion 公司合作,计划在 2028 年之前开发出商业核聚变技术,而日本则在去年推出了大型 JT-60SA 托卡马克反应堆一个六层楼高的庞然大物,旨在破解核聚变约束难题。与此同时,扩大这种新型钨反应堆的规模,可以使人们期待已久的核聚变未来更加清晰。 ... PC版: 手机版:

封面图片

资金进入核聚变发电,中日欧追赶美国

资金进入核聚变发电,中日欧追赶美国 以实现“核聚变发电”为目标的初创企业吸引了大量投资资金。在创立相关初创企业方面,美国走在了前面,欧洲、日本、中国也在紧追猛赶。从现阶段的筹资规模来看,也是美国企业较大。美国企业在融资额的前 10 名中占据了 6 席。融资额最多的是 2018 年成立的 Commonwealth Fusion Systems(联邦聚变系统公司),筹集了超过 20 亿美元的资金。该企业是从麻省理工学院(MIT)衍生出来的初创企业。目标是采用以磁场来控制约 1 亿度高温高压等离子体的“托卡马克型(Tokamak)”方式建设核聚变反应堆。2021 年比尔·盖茨等人投资了该公司。排在第 2 位的TAE Technologies也是美国企业,此前已融资超过12亿美元。该公司的目标是实现以轻氢(普通氢)和硼为燃料、不产生放射线的核聚变发电。排在第 3 位的美国 SHINE Technologies,第 4 位是美国的 Helion Energy,中国新奥集团(ENN)融资约 4 亿美元,跻身排行榜第 5 位。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

了解快速离子碰撞:聚变反应堆中的离子和波的“芭蕾舞”

了解快速离子碰撞:聚变反应堆中的离子和波的“芭蕾舞” 核聚变实验中快速离子(黑色螺旋)与等离子体波(彩色)相互作用的示意图。资料来源:史蒂夫-艾伦(劳伦斯-利弗莫尔国家实验室),由迈克-范-泽兰(通用原子公司)改编在等离子体中,"冲浪者"可能是速度非常快的离子,它们可能出现在核聚变装置中,是核聚变反应或用于加热等离子体的其他过程的结果。这些快速离子的作用通常与海洋中的冲浪者相反它们为海浪提供能量,使海浪变大。当共振粒子与波浪交换能量时,它们也会通过随机碰撞受到等离子体中其他粒子的挤压。这些碰撞的类型和发生频率决定了波浪的大小和粒子的晃动程度。如果波浪过大或过多,就会把冲浪粒子踢出装置,对墙壁造成潜在危险,同时也会减少聚变能的产生量。聚变反应堆的挑战聚变反应堆中的等离子体必须不断加热,以保持产生能量所需的温度。然而,加热等离子体的快速离子也会与等离子体中的波产生共振。这会导致这些波的增长,并有可能将快速离子踢出装置。研究人员需要了解快速离子与等离子体波之间的共振相互作用,以预测和减轻任何不利影响。这项研究将数学计算与计算机模拟相结合,揭示了不同类型的碰撞如何通过竞争来决定共振粒子与等离子体波之间的能量传递方式。研究人员正在利用这一新的认识来制定如何保持等离子体足够热以维持核聚变反应的模型。共振波粒等离子体问题还与星系中的某些引力相互作用有关。这意味着该项目的方法可以应用于天体物理研究,包括暗物质研究。了解快速离子碰撞在核聚变实验中,快速离子通过与电子碰撞,将其能量传递给背景等离子体,从而使等离子体保持足够的热量进行核聚变。碰撞有两种不同类型:扩散散射和对流阻力。扩散碰撞与台球桌上的台球散射是同一类型。与此同时,当把手伸出行驶中的汽车窗外时,你会感觉到阻力碰撞。根据快离子的速度和等离子体的温度,每种碰撞都会对快离子的行为产生更大的影响。具体来说,快离子速度越大,阻力越大,而等离子体温度越高,扩散越有利。在快速离子通过碰撞加热背景等离子体的同时,它们也会与等离子体波发生共振作用,而等离子体波会消耗它们的能量,从而有可能冷却等离子体。在没有任何碰撞的情况下,只有当粒子的速度与波的速度完全匹配时,才会发生快离子与波之间的共振。科学家们早就知道,扩散碰撞的作用是"抹去"共振,即使粒子的速度比波的移动速度稍快或稍慢,它们也能有效地与波进行能量交换。这项研究的新发现是,当阻力存在时,这种碰撞会改变共振发生的速度,这意味着当快离子和等离子体波的速度相差很小时,能量交换实际上是最有效的。共振功能的作用在这项研究中,研究人员用一种名为共振函数的数学对象来描述波粒相互作用强度的特征,共振函数取决于波速和粒速之间的差值。当阻力碰撞比扩散碰撞发生得更频繁时,就会出现更奇特的现象在全新的速度下,有效的能量传递成为可能。这种现象实际上产生了新的共振,而在没有阻力的情况下,这种共振是根本不存在的,表现为共振函数中出现新的峰值,并扩大了共振相互作用的范围。完全从理论上推导出的共振函数决定了从共振快离子中获取自由能后波浪会变得有多大,也决定了这些粒子会如何被波浪踢来踢去。非线性计算机模拟结果与理论预测非常吻合,证实了推导出的共振函数对这两种碰撞的任何组合都是有效的,并加深了我们对碰撞如何影响等离子体中共振波与粒子相互作用的基本理解。基本理论得到验证后,现在可以放心地将其用于改进用于模拟快速离子在聚变装置中的行为的代码,这是开发商业聚变发电厂道路上的关键一步。编译自/ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人