AI 系统绘出 “多彩” 大脑布线图 可解开和重建大脑密集神经元网络

AI 系统绘出 “多彩” 大脑布线图 可解开和重建大脑密集神经元网络 日本九州大学研究人员在新一期《自然・通讯》上发表文章称,他们开发了一种新的人工智能(AI)工具 QDyeFinder,其可从小鼠大脑的图像中自动识别和重建单个神经元。该过程涉及使用超多色标记协议去标记神经元,然后让 AI 通过匹配相似的颜色组合自动识别神经元的结构。将 QDyeFinder 的结果与手动追踪神经元的数据进行比较时,它们的准确性几乎一致。即使与已经充分利用机器学习的现有追踪软件相比,QDyeFinder 也能以更高的准确度识别轴突。

相关推荐

封面图片

反思大脑设计:人类神经元的独特布线挑战了旧有假设

反思大脑设计:人类神经元的独特布线挑战了旧有假设 新研究发现,与小鼠的循环互动不同,人类新皮质神经元单向交流效率更高。这一发现可能会通过模仿人类大脑的连通性来促进人工神经网络的发展。记录多达十个神经元活动的多补丁实验装置。图片来源:Charité | 彭扬帆新皮质是人类智力的关键结构,厚度不足五毫米。在大脑的最外层,200 亿个神经元处理着无数的感官知觉,规划着行动,并构成了我们意识的基础。这些神经元是如何处理所有这些复杂信息的呢?这在很大程度上取决于它们之间的"连接"方式。夏里特神经生理学研究所所长约尔格-盖格(Jörg Geiger)教授解释说:"我们以前对新皮层神经结构的理解主要基于小鼠等动物模型的研究结果。在这些模型中,相邻的神经元经常像对话一样相互交流。一个神经元向另一个神经元发出信号,然后另一个神经元再向它发出信号。这意味着信息经常以循环往复的方式流动"。带有机器人机械手的多通道装置,可在两轮实验之间自动冲洗玻璃移液管。图片来源:Charité | 彭扬帆人类的新皮质比小鼠的新皮质更厚、更复杂。尽管如此,研究人员之前一直假设部分原因是缺乏数据它遵循相同的基本连接原则。盖革领导的夏里特研究小组现在利用极其罕见的组织样本和最先进的技术证明了事实并非如此。在这项研究中,研究人员检查了23名在夏里特接受神经外科手术治疗耐药性癫痫患者的脑组织。在手术过程中,医学上有必要切除脑组织,以便观察其下的病变结构。患者同意将这些组织用于研究目的。神经元的旋转重建。图片来源:Charité | Sabine Grosser为了能够观察人类新皮层最外层相邻神经元之间的信号流,研究小组开发出了一种改进版的"multipatch"技术。这样,研究人员就能同时监听多达十个神经元之间的通信。因此,他们能够在细胞停止体外活动前的短时间内进行必要数量的测量,以绘制网络图。他们分析了近 1170 个神经元之间的通信渠道,以及约 7200 个可能的连接。他们发现,只有一小部分神经元之间进行了相互对话。"人类的信息往往是单向流动的。它很少直接或通过循环返回起点,"该论文的第一作者彭扬帆博士解释说。他曾在神经生理学研究所从事这项研究,目前在夏里特神经学系和神经科学研究中心工作。研究小组根据人类网络结构的基本原理设计了一种计算机模拟,以证明这种前向信号流在处理数据方面的优势。来自多配接装置的微量移液管接近单个神经元。图片来源:Charité | Franz Mittermaier研究人员给人工神经网络布置了一项典型的机器学习任务:从口语数字录音中识别出正确的数字。在这项语音识别任务中,模仿人类结构的网络模型比以小鼠为模型的网络模型获得了更多的正确响应。它的效率也更高,同样的成绩在小鼠模型中需要相当于 380 个神经元,而在人类模型中只需要 150 个神经元。"我们在人类身上看到的定向网络结构更强大,也更节省资源,因为更多独立的神经元可以同时处理不同的任务,"彭解释道。"这意味着局部网络可以存储更多信息。目前还不清楚我们在颞叶皮层最外层的发现是否会扩展到其他皮层区域,也不清楚这些发现能在多大程度上解释人类独特的认知能力。"过去,人工智能开发人员在设计人工神经网络时会从生物模型中寻找灵感,但也会独立于生物模型来优化算法。盖格说:"许多人工神经网络已经使用了某种形式的前向连接,因为它能为某些任务带来更好的结果。人脑也显示出类似的网络原理,这令人着迷。这些对人类新皮质中具有成本效益的信息处理的洞察,可以为完善人工智能网络提供更多灵感"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家开发出标记技术"NeuM" 可实时监测神经元的变化

科学家开发出标记技术"NeuM" 可实时监测神经元的变化 韩国科学技术院(KIST)脑科学研究所的 Kim Yun Kyung 博士领导的研究团队与浦项科技大学 Chang Young-Tae 教授的团队合作,宣布开发出名为 NeuM 的新一代神经元标记技术。NeuM(神经元膜选择性)可选择性地标记神经元膜,使神经元结构可视化,并可实时监测神经元的变化。韩国科学技术院金润京博士团队的研究人员正在利用下一代神经元标记技术"NeuM",对神经元进行实时可视化,并检查高分辨率图像。资料来源:韩国科学技术院神经元不断改变其结构和功能,将信息从感觉器官传递到大脑,从而调节思维、记忆和行为。因此,要克服神经退行性疾病,就必须开发能选择性标记活体神经元以进行实时监测的技术。然而,目前常用于观察神经元的基于基因和抗体的标记技术,由于依赖于特定的基因表达或蛋白质,存在准确性低和难以长期追踪的问题。NeuM 是研究小组通过对神经元细胞进行分子设计而开发的,与神经元膜具有极佳的结合亲和力,可对神经元进行长期跟踪和高分辨率成像。NeuM 中的荧光探针利用活细胞的活性与神经元膜结合,在特定波长光的激发下发出荧光信号。这种神经元膜可视化技术允许对神经元终端结构进行详细观察,并对神经元分化和相互作用进行高分辨率监测。选择性标记神经元膜的分子设计。资料来源:韩国科学技术院NeuM 是第一种通过活体神经元的内吞作用对细胞膜进行染色的技术,它对活体细胞具有选择性反应,排除了未内吞的死细胞。此外,研究团队还成功地将神经元的观察时间从短短 6 小时延长至 72 小时,从而能够捕捉活体神经元在较长时间内随环境变化而发生的动态变化。NeuM有望为目前尚无特效疗法的神经退行性疾病的研究和治疗开发提供洞察力。包括阿尔茨海默氏症在内的这些疾病是由于淀粉样蛋白等有毒蛋白质的产生和炎症物质的涌入造成神经元损伤的结果。NeuM 对神经元变化的精确观察可有效促进对候选治疗化合物的评估。金博士表示:"此次开发的NeuM可以区分衰老和退化的神经元,成为阐明大脑退化性疾病机制和开发治疗方法的重要工具。"他进一步补充说:"未来,我们计划改进 NeuM,通过设计荧光波长来区分绿色和红色等颜色,从而更精确地分析神经元。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

AI"超人眼"让科学家更进一步了解我们生存环境中最复杂、最神秘的层面

AI"超人眼"让科学家更进一步了解我们生存环境中最复杂、最神秘的层面 大脑是有史以来最复杂的器官。它的功能由数百亿个密集的神经元组成的网络支持,数万亿个神经元连接在一起交换信息和进行计算。试图理解大脑的复杂性可能会令人眼花缭乱。然而,如果我们希望了解大脑是如何工作的,我们就必须能够绘制神经元图谱并研究它们是如何连线的。现在,九州大学的研究人员在《自然-通讯》(Nature Communications)上发表文章,他们开发了一种新的人工智能工具,称为 QDyeFinder,可以从小鼠大脑图像中自动识别和重建单个神经元。这个过程包括用超级多色标记协议标记神经元,然后让人工智能通过匹配类似的颜色组合自动识别神经元的结构。图片来源:九州大学/今井武志"神经科学面临的最大挑战之一是绘制大脑及其连接图。然而,由于神经元非常密集,要将神经元及其轴突和树突从其他神经元发送和接收信息的延伸部分相互区分开来非常困难,也非常耗时,"领导这项研究的医学科学研究生院教授今井武志解释说。"轴突和树突只有大约一微米厚,比人类的标准头发丝还要细100倍,它们之间的空间也更小。"识别神经元的一种策略是用特定颜色的荧光蛋白标记细胞。然后,研究人员可以追踪这种颜色,重建神经元及其轴突。通过扩大颜色范围,可以同时追踪更多的神经元。2018 年,今井和他的团队开发出了 Tetbow 系统,该系统可以用光的三原色给神经元涂上鲜艳的颜色。用七色 Tetbow 标记小鼠皮层 2/3 锥体神经元。用 7 种荧光蛋白(mTagBFP2、mTurquoise2、mAmetrine1.1、mNeonGreen、Ypet、mRuby3 和 tdKatushka2)的组合来观察神经元的密集布线。然后通过 QDyeFinder 程序对 7 通道图像进行分析,以揭示单个神经元的布线模式。资料来源:九州大学/今井武"我喜欢使用的一个例子是东京地铁线路图。该系统有 13 条线路、286 个车站,横跨 300 多公里。在地铁地图上,每条线路都用颜色编码,因此你可以很容易地识别哪些车站是相连的,"论文的第一作者之一、当时的助理教授 Marcus N. Leiwe 解释说。"Tetbow让追踪神经元和找到它们之间的连接变得更加容易"。然而,两个主要问题依然存在。神经元仍然需要手工细致地描记,而且仅使用三种颜色不足以辨别更大的神经元群。研究小组努力将颜色的数量从三种增加到七种,但当时更大的问题是人类对颜色感知的极限。仔细观察电视屏幕,你会发现像素是由三种颜色组成的:蓝、绿、红。我们能感知到的任何颜色都是这三种颜色的组合,因为我们的眼睛里有蓝色、绿色和红色传感器。"而机器则没有这样的限制。因此,我们致力于开发一种能够自动分辨这些不同颜色组合的工具,"Leiwe 说。"我们还使这一工具能够自动将相同颜色的神经元和轴突拼接在一起,并重建它们的结构。我们将这一系统命名为 QDyeFinder。"QDyeFinder 的工作原理是首先自动识别给定样本中的轴突和树突片段。然后识别每个片段的颜色信息。然后,利用团队开发的名为 dCrawler 的机器学习算法,将颜色信息分组,从而识别出同一神经元的轴突和树突。Leiwe 解释说:"当我们将 QDyeFinder 的结果与人工追踪神经元的数据进行比较时,它们的准确率基本相同。即使与充分利用机器学习的现有描记软件相比,QDyeFinder 也能以更高的准确率识别轴突"。"研究小组希望他们的新工具能推动目前绘制大脑连接图的工作。他们还想了解新方法能否应用于其他复杂细胞类型(如癌细胞和免疫细胞)的标记和追踪。"也许有一天,我们能读懂大脑中的连接,并理解它们对这个人意味着什么或代表什么。我怀疑这是否会在我有生之年发生,但我们的工作代表着在理解我们存在的也许是最复杂和最神秘的层面方面向前迈出了实实在在的一步,"今井总结道。编译自/ScitechDaily ... PC版: 手机版:

封面图片

研究人员制造出混合大脑:让一个物种的神经元帮助另一个物种

研究人员制造出混合大脑:让一个物种的神经元帮助另一个物种 大鼠(红色)和小鼠(绿色)神经元的混合体在混合大脑中形成了环形气味处理中心什么是混合大脑?听起来像是科幻电影情节中的东西或者是史蒂夫-马丁主演的80年代古怪喜剧但它实际上是两个物种细胞的结合,发育成一个完整的功能性大脑。因此,杂交脑通过创建"合成"神经回路来恢复受损或退化大脑的功能,对于推动再生神经科学的发展非常重要。在哥伦比亚大学欧文医学中心研究人员领导的一项新研究中,大鼠干细胞在发育初期就被引入到小鼠细胞中,从而产生了利用整合的大鼠细胞嗅觉的小鼠大脑。哥伦比亚大学瓦格罗斯内外科医学院遗传学和发育学教授、该研究的共同通讯作者克里斯汀-鲍德温(Kristin Baldwin)说:"我们拥有漂亮的培养皿细胞模型和称为器官组织的三维培养物,它们都有各自的优点。但它们都无法让你确定细胞是否真正发挥了最高水平的功能。这项研究开始向我们展示,我们如何扩大大脑的灵活性,使其能够容纳来自人机界面或移植干细胞的其他类型的输入。"大鼠-小鼠嵌合体的制作示意图 Throesch 等人研究人员将大鼠胚胎干细胞植入小鼠胚泡(受精卵分裂而成的细胞团),然后将胚泡移植到代孕小鼠妈妈的子宫内发育。尽管在进化过程中存在差异(大鼠大脑发育较慢,体积较大),但研究人员观察到,大鼠细胞与小鼠神经元同步生长。在成熟的大鼠-小鼠或嵌合体中,大鼠细胞整合成整个小鼠大脑的神经回路,并与小鼠神经元形成活跃的连接。鲍德温说:"几乎在整个小鼠大脑中都能看到大鼠细胞,这让我们相当惊讶。它告诉我们,插入的障碍很少,这表明许多种小鼠神经元都可以被类似的大鼠神经元取代。"接下来是测试大鼠细胞的功能能力,以及它们是否能取代受损的小鼠神经元。研究人员开发了小鼠模型,这些小鼠的嗅觉神经元(OSNs)在基因上有缺陷或被消融,即被破坏,而嗅觉神经元是检测和传递气味信息的神经元。他们发现,大鼠细胞拯救了小鼠大脑。鲍德温说:"我们在每个小鼠笼子里都藏了一块饼干,结果非常惊讶地发现,它们能通过大鼠神经元找到饼干。"然而,与OSN被破坏的小鼠相比,OSN被基因沉默(即神经元存在,只是不工作)的小鼠找到饼干的成功率较低。这表明,增加替代神经元并非"即插即用"。如果想获得功能性替代神经元,可能需要清空闲置在那里的功能障碍神经元,这可能是某些神经退行性疾病的情况,也可能是自闭症和精神分裂症等神经发育障碍的情况。研究人员在研究中遇到的一个问题是,大鼠细胞随机分布在不同的小鼠体内,这阻碍了他们将研究扩展到其他神经系统。目前,他们正试图找到驱动插入细胞发育成特定细胞类型的方法,这可能会提供更高的精确度。扫清这一障碍将为创造具有灵长类神经元的混合大脑铺平道路,这将帮助我们更接近了解人类疾病。这项研究发表在《细胞》杂志上。 ... PC版: 手机版:

封面图片

Intel大型神经拟态系统Hala Point集成11.5亿神经元 比人脑快200倍

Intel大型神经拟态系统Hala Point集成11.5亿神经元 比人脑快200倍 Loihi 2处理器早在2021年就已发布,首发采用Intel 4工艺,集成230亿个晶体管、六个低功耗x86核心、128个神经形态核心,单颗就有100万个神经元、1.2亿个突触,是上代规模的8倍,性能也提升了10倍。Loihi 2应用了众多类脑计算原理,如异步、基于事件的脉冲神经网络(SNN)、存算一体不断变化的稀疏连接,而且神经元之间能够直接通信,不需要绕过内存。尤其是在新兴的小规模边缘工作负载上,它实现了效率、速度和适应性数量级的提升。比如执行AI推理负载和处理优化问题时, Loihi 2的速度比常规CPU和GPU架构快多达50倍,能耗则只有百分之一。Hala Point系统的形态是一个六机架的数据中心机箱,大小相当于一个微波炉,内置1152颗Loihi 2处理器,共有140544个神经形态处理内核、11.5亿个神经元、1280亿个突触,最大功耗仅为2600瓦。系统内还有2300多颗嵌入式x86处理器,用于辅助计算。内存带宽达16PB/s(16000TB/s),内核间通信带宽达3.5PB/s(3500TB/s),芯片间通信带宽达5TB/s,可以每秒处理超过380万亿次的8位突触运算、超过240万亿次的神经元运算。Hala Point在主流AI工作负载上的计算效率非常出色,比如运行传统深度神经网络时,每秒可完成多达2万万亿次运算(20PFlops),8位运算的能效比达到了15TOPS/W(每瓦特15万亿次计算),相当于甚至超过了基于GPU、CPU的架构。在用于仿生脉冲神经网络模型时,Hala Point能够以比人脑快20倍的实时速度,运行其全部11.5亿个神经元。尤其是在运行神经元数量较低的情况下,它的速度甚至可比人脑快200倍!早期研究结果表明,通过利用稀疏性高达10比1的稀疏连接和事件驱动的活动,Hala Point运行深度神经网络的能效比可高达15TOPS/W,同时无需对输入数据进行批处理。Hala Point系统有望推动多领域AI应用的实时持续学习,比如科学研究、工程、物流、智能城市基础设施管理、大语言模型、AI助手等等。 ... PC版: 手机版:

封面图片

AI根据人类大脑活动重建视觉图像

AI根据人类大脑活动重建视觉图像 这项研究利用了开源的 Stable Diffusion 模型,由日本大阪大学的科学家完成。该AI模型能够有效地生成高质量图像,并且能够捕捉到图像中不同层次的特征,从低级的边缘和纹理到高级的语义和场景。 他们使用功能性磁共振成像 (fMRI) 记录了人类大脑在观看不同类型的图片时产生的神经活动。然后设计了一个AI神经网络,学习大脑活动与 Stable Diffusion 的潜在表示 (图片的多维特征) 之间的映射关系。通过这个网络,他们能够从大脑活动中重建出与原始图片非常相似的图像。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人