国际热核聚变实验堆(ITER)宣布,7 月 1 日,ITER 聚变能项目来自日本和欧洲的大型环形场线圈完工并交付。19 个巨大的

国际热核聚变实验堆(ITER)宣布,7 月 1 日,ITER 聚变能项目来自日本和欧洲的大型环形场线圈完工并交付。19 个巨大的环形场线圈运抵法国南部。ITER 的等离子体电流峰值将达到 1500 万安培,创下全球托卡马克装置新纪录。组装完成后,ITER 聚变反应堆将产生 500 兆瓦的峰值热能。如果连接到电网,将能够持续产生 200 兆瓦的电力,可满足 20 万户家庭的用电需求。(界面)

相关推荐

封面图片

国际热核聚变实验堆计划巨型环磁交付完成 明年启动实验

国际热核聚变实验堆计划巨型环磁交付完成 明年启动实验 ITER是一个由35个国家合作建造的托卡马克项目,旨在测试核聚变作为能源的可行性。托卡马克是一个甜甜圈形状的容器,内部会产生巨大的螺旋型磁场,通过聚变反应燃烧等离子体来产生能量。核聚变是指两个或两个以上轻原子的原子核结合形成一个新的原子核的反应,在这个过程中释放出大量能量。这与核裂变不同,后者通过分裂重原子核释放能量并产生放射性废物。核聚变自然发生在恒星内部,为恒星提供能量,但在地球上却无法自然发生。然而,物理学家和工程师可以在实验室中使用托卡马克装置或激光实现核聚变。虽然听起来很简单,但真正的难点在于如何实现核聚变反应,使其产生的能量超过引发反应所需的能量,理论上这将能够提供无限的能源。托卡马克通过磁铁来控制和约束等离子体。ITER的环形磁场线圈将被冷却到零下269摄氏度,使其成为超导体。这些17米高的线圈将围绕在装有等离子体的甜甜圈形状真空容器周围,使ITER科学家能够控制真空容器内的聚变反应。ITER实验堆将比其他任何托卡马克装置都要大,其中央螺线管磁铁由6个110吨重的磁铁模块组成。整个托卡马克装置的重量将达到惊人的23000吨,磁体产生的磁场将比地球磁场强30万倍。等离子体将被加热到1.5亿摄氏度,是太阳核心温度的10倍。根据上个月在第34届ITER理事会上提出的新基准,ITER预计将于明年启动首次等离子体实验,第一次聚变反应计划在2035年进行。更新后的具体时间表将在本周三的新闻发布会上公布。ITER项目由前苏联领导人戈尔巴乔夫和美国前总统里根于1985年首次提出,但项目直到2005年才最终确定。近20年后,托卡马克装置仍未投入实验。据报道,ITER的成本自启动以来已经增长了四倍,最近估计项目耗资超过220亿美元。技术缺陷和新冠疫情都导致了项目的延迟。人们老生常谈的是,核聚变能成为能源永远是50年之后的事情。它似乎总是超越了当前的技术,人们总是被告知“这次会不一样”。ITER项目的目的是验证核聚变能源的技术可行性,但重点并不在于经济可行性。对于人类来说,经济可行性是另一个棘手问题。核聚变发电不仅要成为一种技术上可行的能源,还要成为能并入电网的能源。核聚变被视为能源物理学的圣杯,是结束人类对化石燃料依赖的一种方式。但它不会很快到来,不足以解决当前日益恶化的气候危机。换句话说,即使ITER项目在工程方面取得了重大突破,也只是解决了问题的一部分。正如美国国家点火装置在2022年在技术上实现反应产生的能量大于促使反应发生的能量那样,人类离实现聚变能源越来越近了,但还有很长的路要走。(辰辰) ... PC版: 手机版:

封面图片

国际热核聚变实验反应堆将运行时间推迟至少八年

国际热核聚变实验反应堆将运行时间推迟至少八年 国际热核聚变实验反应堆(ITER)将其托卡马克装置的运行时间推迟至少八年。托卡马克(Tokamak)是一种利用磁约束来实现磁约束聚变的环性容器,其中央是一个环形的真空室,内部气体在极端高温和高压下变成等离子体。ITER 正在建造世界最大的托卡马克装置,演示可控核聚变的可行性。它原计划在 2025 年测试产生等离子体。但该计划如今推迟到了 2033 年。但推迟并不出人意料。 via Solidot

封面图片

ITER宣布实验继续延期世界最大核聚变装置运行还要等

ITER宣布实验继续延期世界最大核聚变装置运行还要等 ITER是一个巨大甜甜圈形状的磁聚变装置,也被称为托卡马克。托卡马克利用磁场来控制超高温等离子体,从而诱导出核聚变。核聚变是两个或两个以上的轻原子核结合形成一个新原子核的反应,在这个过程中能释放出巨大能量。科学家认为核聚变是一种潜在可行的无碳能源,但成为现实还需要克服许多工程和经济方面的挑战。ITER项目之前的基线(时间框架和里程碑)是在2016年制定的。2020年,突如其来的全球疫情中断了ITER的大部分工作,导致项目进一步推迟。据《科学美国人》报道,ITER项目的成本是最初估计的四倍,最近数据显示项目开支超过220亿美元。在周三早些时候的新闻发布会上,ITER项目总干事彼得罗·巴拉巴斯基(Pietro Barabaschi)解释了项目推迟的原因和更新的项目基线。巴拉巴斯基说:“自2020年10月以来,我们已经向公众和利益相关者明确表示,2025年实现首次等离子体实验不再可能。”“新的基线已经重新设计,优先考虑如何启动研究操作。”巴拉巴斯基表示,新基线将降低操作风险,并为使用氘-氚的聚变反应设备做好准备。他说,与其在2025年进行“短暂、低能量的机器测试”,还不如将更多时间用于调试实验设备,并增加更多的外部加热能力。全磁能运行被推迟了三年时间,从2033年推迟到2036年。氘-氘聚变操作仍将按原计划在2035年前后进行,而氘-氚聚变操作将推迟四年,从2035年推迟到2039年。ITER由中国、欧盟、印度、日本、韩国、俄罗斯和美国等成员国出资建设。目前项目进展缓慢,成本也比最初预计的要高。本周早些时候,ITER组织宣布,托卡马克中用于约束等离子体的巨型磁铁环形磁场线圈已全部交付,这是项目启动20年来的一个重要时刻。这些17米高的巨型线圈将被冷却到零下269摄氏度,围绕在装有等离子体的容器周围,使ITER科学家能够控制内部的聚变反应。ITER基础设施的规模和投资金额一样庞大。目前现存最大的冷质量磁体是欧洲核子研究中心阿特拉斯实验的一个370吨部件,但ITER新交付的全部磁体冷质量为6000吨。ITER的预期目标是展示实现工业规模核聚变所需的集成系统,达到所谓Q≥10(核聚变装置输出能量与输入能量的比例)的科学基准,即为机器内的等离子体提供50兆瓦的加热功率,机器能输出500兆瓦的聚变功率;此外,设备稳态运行过程中能实现Q≥5。这些目标都不容易实现,但实验室环境中科学家用托卡马克和激光进行的核聚变实验,正在帮助人们逐步接近产生能量比反应本身所需能量更多的聚变反应。但核聚变在科学层面的可行性与满足全球能源需求的实际应用还存在巨大差异。人们老生常谈的是,核聚变能成为能源永远是50年之后的事情。它永远超越了当下技术,人们总是被告知“这次会不一样”。ITER项目的目的是验证核聚变能源的技术可行性,但重点并不在于经济可行性。对于人类来说,经济可行性是另一个棘手问题,核聚变发电不仅要成为一种技术上可行的能源,还要成为能并入电网的能源。巴拉巴斯基还提到,ITER托卡马克存放等离子体的容器内壁材料现在将从铍改成钨,“因为很明显,钨与未来的演示机器以及最终的商业聚变装置更相关。”事实上,早在今年5月份,法国超导托卡马克装置WEST就使用钨作为内壁材料,使等离子体维持了比太阳核心温度高3倍的时间长达6分钟。韩国的KSTAR托卡马克也用钨制成的材料取代了碳。正如此前报道的那样,核聚变是一个值得研发的领域,但让人类摆脱化石燃料、作为主要能源不应该依赖它。科学在进步,但核聚变永远是一场超长距离马拉松,而不是短跑。 ... PC版: 手机版:

封面图片

世界上规模最大的核聚变反应堆欧洲联合环状反应堆(JET)中的聚变反应在等离子体放电的5秒阶段以中子的形式释放出总共59兆焦耳的能

世界上规模最大的核聚变反应堆欧洲联合环状反应堆(JET)中的聚变反应在等离子体放电的5秒阶段以中子的形式释放出总共59兆焦耳的能量。 欧洲核聚变研发创新联盟(EUROfusion)、英国原子能管理局(UKAEA)和国际热核聚变实验堆(ITER)9日联合召开新闻发布会公布了上述消息。打破了JET曾在1997年产生约22兆焦耳聚变能量的等离子体的世界能源纪录。 为了过渡到国际大规模聚变实验(ITER)计划,研究人员此次进行的是氘氚混合燃料聚变实验。同时,为了使JET实验尽可能接近未来的热核聚变实验堆条件,他们用铍和钨的混合物而不是碳覆盖等离子体容器壁,因为金属钨比碳更耐腐蚀,而且不会像碳一样过多地与燃料结合。此次实验在比太阳中心温度高10倍的条件下,产生的聚变能量达到了创纪录水平。 ITER设施目前正在法国南部的卡达拉奇建设,预计将使用氘和氚混合燃料,计划实现产出能量10倍于输入能量(聚变增益)。要想产生净能量,即输出能量是加热等离子体所需能量的两倍这一目标,在卡达拉奇ITER设施“上线”之前是不可能实现的。因此,这次实验是在类ITER条件下创造的世界纪录。 德国马克斯·普朗克等离子体物理学研究所科学主任西比勒·君特教授表示:“JET的最新实验是向ITER最终目标迈出的重要一步。” (科技日报)

封面图片

【获 Google 比尔盖茨投资的聚变反应堆开始建设】不久前,由比尔盖茨、 Google 和许多私募股权公司等投资的核聚变研究公

【获 Google 比尔盖茨投资的聚变反应堆开始建设】不久前,由比尔盖茨、 Google 和许多私募股权公司等投资的核聚变研究公司 Commonwealth Fusion Systems(CFS),已经开始着手建设约 47 英亩的聚变反应堆。 #抽屉IT

封面图片

中核集团:中国掌握可控核聚变高约束先进控制技术

中核集团:中国掌握可控核聚变高约束先进控制技术 8月25日下午,新一代人造太阳“中国环流三号”取得重大科研进展,首次实现100万安培等离子体电流下的高约束模式运行,再次刷新我国磁约束聚变装置运行纪录,突破了等离子体大电流高约束模式运行控制、高功率加热系统注入耦合、先进偏滤器位形控制等关键技术难题,是我国核聚变能开发进程中的重要里程碑,标志着我国磁约束核聚变研究向高性能聚变等离子体运行迈出重要一步。  为实现聚变能源,需要提升等离子体综合参数至聚变点火条件。磁约束核聚变中的高约束模式(H模)是一种典型的先进运行模式,被选为正在建造的国际热核聚变试验堆(ITER)的标准运行模式,能够有效提升等离子体整体约束性能,提升未来聚变堆的经济性,相较于普通的运行模式,其等离子体综合参数可提升数倍。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人