太阳系八大行星自转周期对比:

太阳系八大行星自转周期对比: 水星58天16小时 金星243天26分钟 地球23小时56分钟 金星24小时36分钟 木星9小时55分钟 土星10小时33分钟 天王17小时14分钟 海王16小时 纵览古今 淘沙见金!

相关推荐

封面图片

6 月 3 日太阳系六大行星将形成一条直线

6 月 3 日太阳系六大行星将形成一条直线 6 月 3 日,六大行星木星、水星、天王星、火星、海王星和土星将在黎明前的天空形成一条直线。日出前 20 分钟左右,六大行星都应该能看到,但由于天王星和海王星亮度太暗,靠肉眼无法识别,需要使用望远镜。通过肉眼木星、水星、火星和土星都位于天空 73 度的一条直线上。6 月 4 日的凌晨,水星的位置会移动到木星的右下方。6 月 5 日凌晨,水星的位置会位于木星的左下方。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

6月3日天际上演"行星大巡游" 一起见证六大行星罕见地齐聚一堂

6月3日天际上演"行星大巡游" 一起见证六大行星罕见地齐聚一堂 6 月 3 日,观星者将有一个难得的机会来寻找地球太阳系中的六颗行星。水星、火星、木星、土星、天王星和海王星将在夜空中形成一条或多或少的直线,从地球上一些光线较暗、天气晴朗的有利位置可以看到它们,但要看到它们需要一些光学辅助。天文学家很快就指出,由于每颗行星绕太阳运行的椭圆轨道差异很大,这种排列有点像错觉。但是,如果当地天气不干扰的话,这种不寻常的排列确实会很吸引人。最佳观赏时间和地点在日出前 30-60 分钟,从黑暗、高处、光污染最小、地平线一览无余的有利位置向东眺望,行星排列可能最清晰可见。"如果你是在地球以外的太空某处,这些行星根本不会出现排列,"美国宇航局位于阿拉巴马州亨茨维尔的马歇尔太空飞行中心的天体物理学家阿尔方斯-斯特林博士说。"看到两三颗排成一排并不稀奇,但像这样六颗排成一排就不常见了"。世界各地的天文学家和观星者应该在 6 月 3 日黎明前留意"行星巡游",这是我们六个相邻世界的松散排列:水星、火星、木星、土星、海王星和天王星不过后两个需要高倍双筒望远镜或天文望远镜才能发现。资料来源:美国国家航空航天局/夜空网络行星排列的观测技巧肉眼可以看到火星和土星,水星和木星也可能在地平线附近出现。不过,要想再加上海王星和天王星,就需要使用望远镜或高倍双筒望远镜了。斯特林说:"基本上在没有大量光污染的地方都能看到它。只需要在向东看的时候视野开阔。木星和水星将是最后加入的两颗星,它们将在地平线上方升起。你不会看到六个亮点一字排开。在最好的情况下,你可以用肉眼看到木星、水星、火星和土星,其他的需要双筒望远镜或望远镜。"未来机遇与罕见排列根据从地球上看每颗行星的运行轨道和位置,六大行星的排列并不经常发生。事实上,今年晚些时候我们可能会看到一次重演。在 8 月 28 日黎明前和 2025 年 1 月 18 日,我们可能会看到同样的六大行星粗略排列。这当然比行星完全对齐要常见得多,因为在行星完全对齐的情况下,太阳系中的所有八颗行星都会在太阳的同一侧形成近似的排列。考虑到所涉及的所有因素,包括每颗行星的轨道平面、速度和距离,估计只发生一次就需要 3000 多亿年。这比我们母星的估计寿命还要长,所以不要再等了。近期观天亮点这次行星排列是最近一段时期内出现的最新观天事件。太空爱好者们在 4 月 8 日欣赏到了日全食,5 月份在美国大陆部分地区还罕见地看到了极光这是一场异常巨大的地磁暴的结果。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

玩家“Bubbaflubba”在《我的世界》游戏中,等比例构建了完整的太阳系,除了一个巨大的太阳和太阳耀斑,你还能找到地球、火星

玩家“Bubbaflubba”在《我的世界》游戏中,等比例构建了完整的太阳系,除了一个巨大的太阳和太阳耀斑,你还能找到地球、火星、木星、土星、天王星、金星、水星、冥王星和海王星。 在他构建的太阳系中,还构建了木卫一、木卫三、土卫六和木卫二等卫星。该项目的亮点就是太阳,Bubbaflubba 还深度还原了太阳耀斑等细节。 Bubbaflubba 表示使用了多种类型的 Minecraft 积木制作恒星,选择了橙色混凝土作为中心,外层是橙色和红色的彩色玻璃,使设计看起来热力十足。 via 匿名 标签: #我的世界 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

《2024英国纪录片《太阳系 第一季》全5集》|简介:《2024英国纪录片《太阳系 第一季》全5集》是一部聚焦太阳系的科普纪录片

《2024英国纪录片《太阳系 第一季》全5集》|简介:《2024英国纪录片《太阳系 第一季》全5集》是一部聚焦太阳系的科普纪录片。该片以英国制作团队专业的视角和先进的拍摄技术,深入探索太阳系的奥秘。在这五集内容中,分别对太阳系的各个行星、卫星、小行星带等进行了详细介绍。从水星的神秘磁场,到金星的极端气候;从火星上是否存在生命的探索,到木星令人惊叹的大红斑,再到遥远的海王星独特的蓝色外观和神秘光环。纪录片不仅展示了太阳系天体的壮丽景象,还通过专家的讲解和科学实验,深入浅出地阐述了太阳系的形成、演化以及各天体的物理特性和运行规律。观众可以跟随镜头,仿佛置身于宇宙之中,领略太阳系的神奇与美丽,同时也能了解到最新的天文学研究成果,激发对宇宙探索的兴趣,提升对科学知识的认知|标签:#纪录片#太阳系#天文学#科普知识|文件大小:NG|链接:

封面图片

地球自转变慢了,5年后一分钟只有59秒?

地球自转变慢了,5年后一分钟只有59秒? 事实上,这样的表述并不准确,正确的表述应该为:2029年,某一个1分钟可能缩短为59秒,并且冰盖融化延后了这一天的到来。这到底是怎么回事呢?为什么1分钟还会减少成59秒呢?时间难道不是固定不变的吗?这又会对我们的生活产生哪些影响?我们的计时系统尽管时间似乎是均匀流逝的,但实际上我们已经调整了几十年每隔几年插入一个闰秒。为了更好地理解这个问题,首先需要了解下我们的计时系统。为确定时间,我们现在常见的时间系统包括三种,分别是:以地球自转周期为基准的世界时(Universal Time,UT1)以地球绕太阳公转周期为基准的历书时(Ephemeris Time,ET)以原子内部电子能级跃迁发射的电磁振荡频率为基准的原子时(International Atomic Time,法语:Temps Atomique International, TAI)世界时(UT1)是通过将地球自转一周的时间记为一天来确定的时间标准。它基于地球相对于平太阳的角度变化来划分时间刻度。世界时在航海和导航领域,以及天体测量和天文大地测量领域中,起到了重要作用。然而,由于地球自转的速度并不是恒定的,世界时的稳定性不足,难以完全满足现代科学研究和技术应用对极高精度时间的需求,比如天文观测和全球导航卫星系统(GNSS)。为了满足更高精度的实际需要,科学家们引入了原子时。具体来说,原子时是通过原子钟来实现的,而原子钟利用的是原子内部电磁振荡的周期来计时,这种振荡周期非常稳定。因此,原子时具有极高的准确度和稳定度,能够提供极其精准的时间标准,从而被广泛应用于科学研究、导航系统、通信网络等领域。铯原子钟 图片来源:维基百科在中国科学院国家授时中心空间锶原子光钟实验室,测量仪器显示相关实验信号。新华社记者 张博文摄967年,第十三届国际计量代表大会决定将秒的定义从天文秒改为原子秒,将铯-133原子无干扰的基态超精细能级跃迁对应辐射的9192631770个周期所持续的时间定为1秒,也就是说,将铯-133原子发出的辐射振动9192631770次所持续的时间定为1秒,称作国际单位制秒。这一决定标志着原子时的正式确立,并为后续的时间计量系统的发展奠定了基础。值得一提的是,为了实现我们国家标准时间的自主校准,中国科学院国家授时中心以张首刚研究员为代表的科学家们长期扎根西部,甘于寂寞,攻关十余年,成功研制高稳定连续运行冷原子铯喷泉基准钟,把我国标准时间与国际标准时间的偏差从100纳秒减小到5纳秒内。一分钟为什么会变成59秒?以地球自转为参考的世界时,一直是国际标准时间产生的重要参数之一。一天被分为24小时,1小时60分钟,一分钟60秒,世界时刻反映了地球相对于宇宙背景的转动角度,这是很重要的。而采用原子时是一种非常准确、不变的时间定义方法,但它也带来了一个令人不安的后果:原子时与地球自转定义的世界时不太匹配。原子时与世界时之间的差异。图片来源:文献[1]几个世纪以来,时间测量的稳定度不断提高,使我们能够看到地球的自转速度并不恒定,这就会使原子时和世界时之间产生差异。为了兼顾这两种需要,便引入了协调世界时(Coordinated Universal Time, UTC)系统。当国际原子时与世界时的时刻相差达到0.9秒时,就需要对协调世界时(UTC)进行调整,即增加或减少1秒,以尽量接近世界时,这就是所谓的闰秒(负闰秒,最后一分钟为59秒;正闰秒,最后一分钟为61秒)。这种添加闰秒的世界时就是协调世界时,也称世界标准时间,是目前使用最广泛的时间系统。自1972年UTC正式使用至今以来,地球自转一直处于不断减慢的趋势,协调世界时已经添加了27个闰秒,均为正闰秒。然而,自2020年年中以来,地球自转速率呈现加快趋势。因此科学家估计,在2029年,人类可能就需要首次减少1秒为“负闰秒”,对应的1分钟只有59秒,来保持原子钟时间与地球自转周期的同步。地球自转速度为何不恒定?在千年的时间尺度上,地球自转速度的变化受三个地球物理过程的影响。首先,海水和海底之间的摩擦会逐渐消耗地球自转的动能,从而减缓地球的自转速度,这就是所谓的潮汐效应。其次,由于冰期后回弹,地球形状会发生变化,变得更为扁平,使地球的惯性矩发生变化,降低了其自转速度。这类似于滑冰运动员在旋转时将手臂向身体两侧平伸以减速旋转的原理。最后,地球内部的一些过程,即地核和其外层(地幔、地壳)之间的相互作用和相互影响,例如地磁场变化和地幔对流,也会导致地球自转速度产生变化。根据美国国家航空航天局(NASA)和国际地球自转和参考系统服务(IERS)的数据,地球的自转速度确实在缓慢减慢。研究表明,地球自转周期每个世纪增加大约1.8毫秒。虽然这个变化看似微小,但在长时间尺度上,其累积效应却非常显著。例如,古代天文学家记录的日食时间与我们今天计算的时间存在显著差异。2500年前(大约春秋战国时期)观测到的日食时间与现代时钟相比,时钟误差约为4小时。原本,科学家预计由于这些地球物理过程的作用,地球自转速度的减缓将使得首个“负闰秒”在2026年到来。然而,卫星测量数据显示,从1986年开始,随着全球气候变暖加剧,格陵兰和南极的冰盖正在加速融化。这一现象导致海平面加速上升,进一步减缓了地球自转速度。由于冰盖融化和海平面上升的双重效应,地球的惯性矩增加,自转速度变得更慢,从而推迟了负闰秒的到来。极地冰层融化并向赤道移动,减缓了地球的自转速度。图片来源:文献[3]闰秒会带来什么影响?闰秒通常在世界协调时(UTC)6月30日或12月31日的23:59:60实施。闰秒的调整对日常生活的直接影响较小,人们往往感受不到闰秒所带来的变化。但对依赖精确时间同步的技术系统和应用领域,如计算机、金融、航空航天等领域,闰秒却有重要影响。例如,闰秒的加入或删除需要全球同步,对计算机系统的时间管理提出了挑战。2012年,多个大型网站就因为时间同步错误,导致服务器崩溃,出现了短暂的服务中断。2015年,闰秒再度来临时,工程师们修复了部分2012年出现的问题,但发现了新的问题。又如,每次闰秒调整,GNSS系统需要更新时间数据,以保证授时精度。如果未能及时调整,可能导致导航电文的不准确。与传统的增加一秒的闰秒不同,史无前例的负闰秒将会给许多依赖精确时间同步的系统带来新的挑战和不确定性。计算机和网络系统、金融系统等等往往已经设计好如何处理增加的正闰秒,但对如何处理减少的负闰秒则可能缺乏足够的准备。科学家们正在呼吁各界共同努力,为负闰秒的实施做好充分准备,以确保全球技术系统的稳定和安全。尽管闰秒的初衷是保持UTC与地球自转时间UT1同步,但闰秒的调整,特别是潜在的负闰秒,正不断增加时间同步系统的复杂性。有人提议实施幅度更大的校正,如闰分、闰时,以将调整时间延长至百年、千年;也有人建议停止校正,同时公布世界时和国际原子时之间不断增长的时刻差。2022年第27届国际计量大会决定,最迟不晚于2035年废除闰秒,改为闰分,即允许国际原子时与世界时的时刻相差在1分钟以内。并要求各方协商提出一个可以将“协调世界时”持续至少百年的新方案。随着科技的发展,新的时间同步技术会不断涌现,例如更精准的光钟和更加智能的网络时间协议,都可能为解决闰秒问题提供新的途径。参考文献[1] Tavella, Patrizia, and Jerry X. Mitrovica. "M... PC版: 手机版:

封面图片

飞镖盘还是甜甜圈?铁陨石揭示太阳系雏形

飞镖盘还是甜甜圈?铁陨石揭示太阳系雏形 "铁陨石是隐藏的宝石。我们对铁陨石了解得越多,它们就越能揭开太阳系诞生之谜,"加州大学洛杉矶分校行星科学家张必东说。图片来源:加州大学洛杉矶分校陨石展厅"幸运的是,太空中降下了一些线索在太阳系历史早期形成并穿过地球大气层的天体碎片,即陨石。陨石的成分讲述了太阳系诞生的故事,但这些故事往往提出了更多的问题,而不是答案。美国加州大学洛杉矶分校和约翰-霍普金斯大学应用物理实验室的行星科学家小组在《美国国家科学院院刊》上发表的一篇论文中报告说,铱和铂等在高温下凝结的难熔金属,在寒冷且远离太阳的外盘形成的陨石中含量更高。这些金属应该是在靠近太阳的地方形成的,那里的温度要高得多。是否有一条途径将这些金属从内盘转移到外盘?圆环状原行星盘 WSB 52。资料来源:Sean Andrews、Jane Huang、Laura Pérez et al.大多数陨石是在太阳系历史的最初几百万年内形成的。有些陨石是行星形成过程中留下的未熔化的颗粒和尘埃的集合体。其他陨石在其母体小行星形成过程中经历了足够的热量而熔化。当这些小行星熔化时,硅酸盐部分和金属部分由于密度不同而分离,就像水和油不能混合一样。如今,大多数小行星都位于火星和木星之间的一条厚厚的带子上。科学家们认为,木星的引力扰乱了这些小行星的运行轨迹,导致许多小行星相互撞击,四分五裂。当这些小行星的碎片落到地球上并被回收时,它们被称为陨石。铁陨石来自最早的小行星的金属内核,比太阳系中任何其他岩石或天体都要古老。铁陨石含有钼同位素,这些同位素指向这些陨石形成的原行星盘的许多不同位置。这使得科学家们能够了解到原行星盘的化学成分在其雏形时期是怎样的。此前利用智利阿塔卡马大型毫米波/亚毫米波阵列进行的研究发现,其他恒星周围有许多类似飞镖盘的同心圆环。这些行星盘(如 HL Tau)的环被物理间隙隔开,因此这种盘不可能提供一条将这些难熔金属从内盘运输到外盘的路线。阿塔卡马大毫米波/亚毫米波阵列拍摄的年轻恒星金牛座 HL 周围的原行星盘图像。资料来源:ALMA (ESO/NAOJ/NRAO), NSF新论文认为,我们的太阳圆盘很可能在一开始就没有环状结构。相反,我们的行星盘看起来更像一个甜甜圈,随着行星盘的迅速膨胀,富含铱和铂金属颗粒的小行星迁移到了行星盘的外部。但这又给研究人员带来了另一个难题。磁盘膨胀后,重力本应将这些金属拉回太阳。但这并没有发生。第一作者、加州大学洛杉矶分校行星科学家张必东(音译)说:"木星形成后,很可能打开了一个物理缺口,将铱和铂金属困在外盘,防止它们落入太阳。这些金属后来融入了在外盘形成的小行星中。这就解释了为什么形成于外盘的陨石碳质软玉和碳质铁陨石的铱和铂含量远远高于它们的内盘陨石。"张和他的合作者以前曾利用铁陨石来重建水在原行星盘中的分布情况。"铁陨石是隐藏的宝石。我们对铁陨石了解得越多,就越能揭开太阳系诞生之谜。编译自/ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人