2022年,美国新生儿死亡率增加1.8%,得克萨斯增加12.7%;美国因先天性缺陷或染色体异常死亡的新生儿降低3.1%,得克萨斯

2022年,美国新生儿死亡率增加1.8%,得克萨斯增加12.7%;美国因先天性缺陷或染色体异常死亡的新生儿降低3.1%,得克萨斯增加22.9%。原因很简单,中世纪的得克萨斯从2021年开始禁止堕胎,明知胎儿有先天性缺陷或染色体异常、生下必死,也必须等着生下来。

相关推荐

封面图片

没人性的得克萨斯:得州一名妇女怀孕20周时查出胎儿第18号染色体多了一条(爱德华综合症)。95%以上的概率是死胎。即使是活胎,严

没人性的得克萨斯:得州一名妇女怀孕20周时查出胎儿第18号染色体多了一条(爱德华综合症)。95%以上的概率是死胎。即使是活胎,严重畸形,不到10%的概率能活过第一年,侥幸活过第一年,也不会走路、说话。但得州腐败检察长禁止她堕胎。地方法官允许她堕胎,又被州最高法院(清一色共和党)叫停。

封面图片

#菲律宾新闻 珍珠大厦震惊事件越南女子服打胎药致新生儿死亡

#菲律宾新闻 珍珠大厦震惊事件越南女子服打胎药致新生儿死亡 刚才在菲律宾珍珠大厦发生了一起骇人听闻的事件。一名越南女子在三楼厕所服用打胎药,导致生下的婴儿死亡,并将婴儿遗弃在垃圾桶内。 事件发生后,9点左右,有人拦住她不让离开,但在9点半左右又放行了。最初是有很多女生表示恶心,然后就不让她们出大门。 值得注意的是,这件事可大可小。如果物业报警,就可能引发更大的麻烦,因为菲律宾法律严禁堕胎。

封面图片

研究人员发现冠状病毒与脆性X染色体综合征之间存在联系

研究人员发现冠状病毒与脆性X染色体综合征之间存在联系 SARS-CoV-2是导致COVID-19大流行的冠状病毒变种。研究人员非常惊讶地发现,SARS-CoV-2 劫持了与脆性 X 综合症相关的蛋白质,而脆性 X 综合症是导致智力残疾的最常见遗传原因。为了进一步探索冠状病毒与脆性 X 相关蛋白之间的联系,负责实验室工作的博士后迪米特里亚-加尔万斯卡(Dimitriya Garvanska)使用了各种细胞生物学和生物化学方法来了解这一过程。研究小组想知道,劫持脆性 X 相关蛋白是否对病毒在体内传播的能力至关重要。因此,他们与得克萨斯大学医学分院的一组研究人员一起制造了一种"突变病毒"。脆性 X 综合征小知识:这种综合症是由所谓的 FMR1 基因缺陷引起的,是遗传性智力障碍最常见的原因。这种病的特征是智力障碍,通常男孩/男性为中度到重度,女孩/女性为轻度。大约每 4,000 名男婴和每 10,000 名女婴中就有 1 人患有脆性 X 综合症。"我们对病毒蛋白 NSP3 的一小部分进行了突变,使其与脆性 X 相关蛋白结合,细胞培养试验表明,这降低了病毒的传播能力。此外,对仓鼠的测试表明,感染变异病毒后,在感染初期对肺部的影响较小,"Dimitriya Garvanska 解释并补充道:"也就是说,与脆性 X 相关蛋白的结合对病毒的传播能力至关重要。随后的测试表明,这些蛋白质是细胞抗病毒防御的一部分,而 SARS-CoV-2 试图通过劫持这些蛋白质来对抗这种防御系统"。研究结果可能表明,脆性 X 综合征患者更容易感染 SARS-CoV-2 和其他病毒。这表明,我们或许应该对这些病人更加关注。该研究有助于深入了解脆性 X 综合征的可能病因除了确定冠状病毒与脆性 X 综合征之间的联系,雅各布-尼尔松、迪米特里亚-加尔万斯卡及其同事还对脆性 X 综合征有了更深入的了解。"我们知道,脆性 X 相关蛋白是大脑发育的关键。因为如果没有足够的蛋白质,我们就会遇到问题。但我们不知道它们为什么如此重要。在这项研究中,我们了解到它们与另一种蛋白质 UBAP2L 结合,而 UBAP2L 有助于决定细胞产生哪些蛋白质,"雅各布-尼尔松说。研究人员还发现,脆性 X 相关蛋白的突变会阻止它们与 UBAP2L 结合。这表明,要了解脆性 X 综合征,我们需要了解它是如何影响细胞中蛋白质的生成的。虽然这项新研究可以被称为基础研究,但其结果可能会被证明对未来的治疗有用。到目前为止,这还只是猜测。但从根本上说,我们对这些机制了解得越多,将来影响它们的机会就越大。您可以阅读《EMBO Reports》上的研究报告:"SARS-CoV-2 劫持脆性 X 弱智蛋白以实现高效感染"编译自:ScitechDaily ... PC版: 手机版:

封面图片

人类为什么没有尾巴?基因中的秘密可以解释原因

人类为什么没有尾巴?基因中的秘密可以解释原因 这项研究成果最近发表在《自然》(Nature)杂志上,研究人员比较了无尾猿和人类与有尾猴的DNA,发现猿类和人类都有一个DNA插入基因,但猴子却没有。研究小组设计了一系列小鼠,以研究插入基因 TBXT 是否会影响小鼠的尾巴,结果发现小鼠的尾巴会受到各种影响,包括一些小鼠出生时没有尾巴。"我们的研究开始解释进化是如何去掉我们的尾巴的,这个问题从小就吸引着我,"该研究的通讯作者、纽约大学格罗斯曼医学院的杰夫-D-博克(Jef D. Boeke)博士和伊泰-柳井(Itai Yanai)博士说。夏现在是哈佛大学研究员协会的初级研究员,也是麻省理工学院和哈佛大学布罗德研究所的首席研究员。过去的研究发现,有 100 多个基因与各种脊椎动物尾巴的发育有关,研究作者推测,尾巴的消失是由于其中一个或多个基因的 DNA 代码发生了变化(突变)。研究作者说,值得注意的是,新的研究发现,尾巴的差异不是来自TBXT突变,而是来自在类人猿和人类祖先的基因调控代码中插入了一个名为AluY的DNA片段。这项新发现源自遗传指令转化为蛋白质的过程,蛋白质是构成人体结构和信号的分子。DNA 被"读取"并转化为RNA 中的相关物质,最终转化为成熟的信使 RNA(mRNA),从而产生蛋白质。在产生 mRNA 的一个关键步骤中,被称为内含子的"间隔"部分会被从代码中剪除,但在此之前,只需将被称为外显子的 DNA 部分拼接在一起(剪接),即可编码最终指令。此外,脊椎动物的基因组还进化出了另类剪接,即通过省略或增加外显子序列,一个基因可以编码不止一种蛋白质。除了剪接之外,人类基因组还在进化中加入了"无数"开关,从而变得更加复杂。"无数"开关是人们不甚了解的"暗物质"的一部分,它在不同类型的细胞中开启不同水平的基因。还有其他研究表明,人类基因组中的非基因"暗物质"(位于基因之间和内含子内)有一半由高度重复的 DNA 序列组成。此外,这些重复序列大多由反转座子组成,反转座子也被称为"跳跃基因"或"移动元素",它们可以四处移动,反复、随机地插入人类代码中。据信,大猩猩、黑猩猩和人类的尾巴脱落发生在大约 2500 万年前,当时它们正从旧世界的猴子进化而来。图片来源:《自然》杂志 (2024)综合这些细节,目前这项"令人震惊"的研究发现,影响尾长的转座子插入物AluY随机出现在TBXT代码的一个内含子中。虽然它没有改变编码部分,但研究小组发现,内含子插入影响了替代剪接,这是以前从未见过的,从而导致了不同的尾长。夏发现,在人类和猿类的TBXT基因中,如果AluY插入保持在同一位置,就会产生两种形式的TBXTRNA。他们推测,其中一种形式直接导致了尾巴的缺失。纽约大学朗格尼医院系统遗传学研究所索尔和朱迪思-伯格斯坦主任博克说:"这一发现非常了不起,因为大多数人类内含子都携带重复、跳跃的DNA拷贝,但对基因表达没有任何影响,而这种特殊的AluY插入却起到了决定尾巴长度这样显而易见的作用。"作者说,包括大猩猩、黑猩猩和人类在内的灵长类动物的尾巴脱落据信发生在大约2500万年前,当时灵长类动物从旧世界猴子进化而来。在这次进化分裂之后,包括现今人类在内的猿类群体形成了较少的尾椎,从而产生了尾骨。虽然失去尾巴的原因尚不确定,但一些专家认为,它可能更适合在地面上生活,而不是在树上。研究人员说,失去尾巴带来的任何优势都可能是强大的,因为它可能是在付出代价的情况下发生的。基因通常会影响身体的多个功能,因此在某处带来优势的变化可能会对其他地方造成损害。具体来说,研究小组发现,在TBXT 基因插入研究的小鼠中,神经管缺陷略有上升。系统遗传学研究所的柳井说:"未来的实验将检验这样一种理论,即在古老的进化权衡中,人类尾巴的缺失导致了神经管先天性缺陷,比如脊柱裂中涉及的那些缺陷,如今每一千个人类新生儿中就有一个会出现脊柱裂。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人