#广式电子宠物:

#广式电子宠物 : NE555 (Timer IC)为8脚时基集成电路,大约在1971年由Signetics Corporation发布,在当时是唯一非常快速且商业化的Timer IC。NE555体积小、重量轻、稳定可靠,操作电源范围大,输出端的供给电流能力强,计时精确度高,温度稳定度佳,且价格便宜。 via 逃离伏拉夫

相关推荐

封面图片

中国科研团队完成新型光刻胶技术初步验证 为EUV光刻胶开发做技术储备

中国科研团队完成新型光刻胶技术初步验证 为EUV光刻胶开发做技术储备 且光刻显影各步骤所需时间完全符合半导体量产制造中对吞吐量和生产效率的需求。作为半导体制造不可或缺的材料,光刻胶质量和性能是影响集成电路电性、成品率及可靠性的关键因素。但光刻胶技术门槛高,市场上制程稳定性高、工艺宽容度大、普适性强的光刻胶产品屈指可数。当半导体制造节点进入到100nm甚至是10 nm以下,如何产生分辨率高且截面形貌优良、线边缘粗糙度低的光刻图形,成为光刻制造的共性难题。该研究成果有望为光刻制造的共性难题提供明确的方向,同时为EUV光刻胶的着力开发做技术储备。上述具有自主知识产权的光刻胶体系在产线上完整了初步工艺验证,并同步完成了各项技术指标的检测优化,实现了从技术开发到成果转化的全链条打通。 ... PC版: 手机版:

封面图片

David Baker团队又一突破:首次利用生成式AI设计出全新抗体

David Baker团队又一突破:首次利用生成式AI设计出全新抗体 据 Nature 报道,这一工作提出了将人工智能驱动的蛋白质设计带入价值数千亿美元的治疗性抗体市场的可能性。抗体与流感病毒蛋白结合(来源:Juan Gaertner/Science Photo Library)相关研究论文以“Atomically accurate de novo design of single-domain antibodies”为题,已发表在预印本网站 bioRxiv 上。英国牛津大学免疫信息学家 Charlotte Deane 评价道:“这是一项非常有前景的研究,它代表了将人工智能蛋白质设计工具应用于制造新抗体的重要一步。”让抗体设计更快、更容易抗体是一种免疫分子,能强力附着在与疾病相关的蛋白质上,传统的制造方法包括对动物进行免疫实验或对大量分子进行筛选,昂贵且费时。该论文的共同第一作者、华盛顿大学计算生物化学家 Nathaniel Bennett 认为,能够缩短这些昂贵的人工智能工具有可能“使设计抗体的能力民主化”。在这项工作中,研究团队利用 RFdiffusion 和 RoseTTAFold2 网络,通过计算机模拟和实验验证,成功设计出了全新的抗体 VHH(单域抗体;Variable Heavy-chain of Heavy-chain antibodies)。在整个设计过程中,研究团队充分考虑了抗体与靶标之间的相互作用,力求达到最优的结合效果。据论文描述,RFdiffusion 和 RoseTTAFold2 网络在抗体设计中扮演了至关重要的角色,实现了抗体结构的设计和预测,为全新抗体的生成提供了基础。其中,RFdiffusion 网络主要用于设计全新的抗体结构,特别是针对特定的抗原表位。它可以根据用户指定的抗原表位,设计出具有结合能力的抗体结构。基于 AlphaFold2/RF2 的蛋白质骨架,RFdiffusion 网络使用一系列训练过程来进行蛋白质结构的预测和优化。在训练过程中,该网络通过一系列步骤对蛋白质结构进行噪声处理,并预测去噪后的结构。这些步骤使网络能够学习并优化抗体结构,从而适应特定的抗原表位。通过训练和优化过程,该网络能够生成具有高结合亲和力的抗体结构,从而实现对特定抗原的识别和结合。用于抗体设计的RFdiffusion概述(来源:该论文)RoseTTAFold2 网络则主要用于预测抗体结构,特别是在抗体-抗原复合物中的抗体结构。它能够帮助验证设计的抗体结构与抗原的结合模式是否符合预期。基于 Transformer 神经网络架构,RoseTTAFold2 网络使用大量的蛋白质结构数据进行训练。它通过对蛋白质序列进行序列到序列的预测,从而得到全新的蛋白质 3D 结构。经过微调的RoseTTAFold2能够区分真正的复合物和诱饵复合物(来源:该论文)微调后的RoseTTAFold2与IgFold在抗体单体预测方面的比较(来源:该论文)通过对设计的抗体结构进行预测,研究团队可以更好地了解抗体与抗原之间的相互作用,并验证设计的合理性和有效性。整体上,通过设计和预测抗体结构,RFdiffusion 和 RoseTTAFold2 网络为全新抗体的创新和验证提供了重要支持。人工智能设计的抗体,能用吗?利用这种方法,研究团队设计出了数千种抗体,这些抗体能识别几种细菌和病毒蛋白质(比如流感病毒用来入侵细胞的蛋白质)的特定区域以及一种抗癌药物靶标。然后,他们在实验室中制作了这些设计的一个子集,并测试了这些分子是否能与正确的靶点结合,进而验证了抗体卓越的有效性。例如,表面等离子共振(SPR)等技术,可以验证 VHH 与目标抗原的结合能力。实验结果显示,设计的 VHH 能够与目标抗原特异性结合,并表现出一定的结合亲和力。另外,X 射线晶体学或/和冷冻电镜技术,可以解析 VHH 与目标抗原的复合物结构。结构解析结果显示,设计的 VHH 与目标抗原形成特定的结合模式,VHH 的关键残基与抗原表位发生特异性相互作用,进一步证明了设计的抗体具有与目标抗原结合的能力。最后,通过 SPR 等技术,研究团队对 VHH 与目标抗原的结合亲和力进行了验证。结果显示,设计的 VHH 与目标抗原之间存在一定的结合亲和力,其亲和力值反映了两者之间的结合强度和稳定性。以上这些结果,为设计的抗体的进一步应用和开发提供了重要的实验基础和支持。然而,该研究也存在一些局限性。首先,设计的 VHH 在结合亲和力和特异性方面仍有待进一步优化和提高;其次,设计的 VHH 主要针对单一抗原进行了验证,对于多种抗原或复杂疾病的治疗效果尚待验证;另外,抗体的免疫原性、稳定性和生产成本等方面也需要进一步研究和解决。蛋白质设计,充满无限可能近年来,David Baker 团队一直致力于蛋白质设计研究,且成果显著。图|David Baker2021 年 8 月,团队研发出了一款完全免费的、新的深度学习工具 RoseTTAFold,不仅拥有媲美 AlphaFold2 的蛋白质结构预测超高准确度,而且更快、所需计算机处理能力更低。2021 年 11 月,团队进一步将 AlphaFold 2 与 RoseTTAFold 相结合,成功用于蛋白质-蛋白质复合物结构的预测。去年 4 月,他们在一篇发表在 Science 上的论文中,介绍了如何利用强化学习设计新型蛋白质设计软件,由该方法合成的蛋白质能更有效地在小鼠体内产生有用抗体。他们称,这一突破将会在疫苗领域有所贡献。去年 7 月,他们开发了一个人工智能蛋白质结构预测系统 RoseTTAFold,称可与 AlphaFold 媲美,不仅可以预测蛋白质结构,还能预测蛋白复合物结构。随后,他们也公开了 RFdiffusion 的云版本,将定制蛋白质带入了主流科研界。去年 12 月,团队在 Nature 上发表论文,展示了人工智能技术能够从头设计高亲和力的蛋白,这让科学家们更有可能创造出更便宜的抗体替代品,用于疾病检测和治疗。一项好的科学研究,不仅需要过硬的技术,也同样需要丰富的想象力。未来,抗体及蛋白质设计领域或将充满着无限可能,为人类健康和医学治疗带来新的希望。参考链接: ... PC版: 手机版:

封面图片

宁德时代:全固态电池有望2027年小批量生产

宁德时代:全固态电池有望2027年小批量生产 “2027年,宁德时代全固态电池小批量生产机会很大,但受成本等因素制约,大规模生产尚不能实现。”吴凯表示。今年以来,全固态电池不断掀起热议,而此次重庆国际电池技术交流会,也专门开设了全固态电池技术讨论专场,会场中座无虚席,不少人席地而坐,足以显示市场和公众对这一崭新电池技术的关注。“十余年来,我国动力电池行业已在核心技术、市场规模、成本价格方面取得先发优势。但是我们也注意到消费者对动力电池还有更高的要求和期待,寻找高能量密度和高安全兼得的动力电池是我们的主要研发方向,也是一项长期的工作。在各条技术路线上,全固态电池具有巨大的潜力,是下一代动力电池重要发展方向。”在演讲中,吴凯表示。从国家层面上来看,中国、美国、日本、韩国、欧盟均出台相关发展规划和战略,各国重兵投入,其本质是希望能够在全固态电池技术上率先取得突破,来改变目前动力电池的市场格局。从产业链布局来看,上游基础材料及设备,中游全固态电池研发和制造,下游应用,我国企业参与的最多,产业链上企业都很有热情,但是我们也要清醒地看到,海外企业在全固态电池专利布局上具有一定优势,需要尽快迎头赶上。在吴凯看来,全固态电池之所以吸引了全世界的投入,其核心价值在于其能够在安全底座保证的前提下较大幅度的提升能量密度,帮助动力电池在应用中有明显改善,而其他体系要达到这样的效果比较困难。据介绍,世界范围内的研究,对固态电池按照电解质区分,主要是3个路线,聚合物、氧化物和硫化物。理想的电解质需要拥有较好的离子电导率,对高电压正极、锂金属负极有较好的电化学稳定性,并且制造安全和便捷,当然也要兼顾成本的可负担性。吴凯认为,目前来看,解决方案进展比较快的硫化物路线,率先量产的可行性较大。但他也承认,目前我们所研究的路线中,没有一种电解质十全十美,比如聚合物电解质的离子电导率和氧化稳定性都较差,氧化物电解质太坚硬,会导致刚性界面接触问题。硫化物电解质容易与空气中的水产生有毒气体,制备工艺复杂且成本较高。当然在各国科学家的努力下,各个路线都有一些针对性的技术出来。全固态电池需要解决四大层面问题今年1月,欧阳明高院士表示,全固态电池市占份额替代1%,就已具有突破性意义。“我们也一直在向着这个方向努力。我们认为要实现这个目标,要率先解决四大问题。”吴凯说。第一是固-固界面的问题。正极材料与电解质之间固固界面接触不充分,阻碍离子传输;负极在充放电过程体积膨胀大,导致固-固界面的动态损伤,难以修复,持续恶化固-固界面。这些都严重影响全固态电池的循环寿命和倍率性能。第二是锂金属负极的应用问题,使用锂金属负极可以使全固态电池能量密度高的优势充分发挥。但是锂金属的高活性和其表面钝化层的锂离子扩散能垒较高,会促进锂枝晶的形成,枝晶会引发短路并造成电池失效,我们需要充分了解固态枝晶形成与生长的机理,并加以克服。第三是针对最有希望的硫化物电解质路线,硫化物电解质在空气中不稳定的主要原因是容易发生化学反应, 电解质在空气中水分子的作用下会发生水解生成有毒的H2S气体,在水解的过程中电解质结构还会发生坍塌, 离子电导率急剧下降。另外硫化物电解质的合成成本问题,其原材料硫化锂价格高,而制备这些原材料的特殊工艺也增加了成本负担。这些都将是全固态电池推广中的障碍。第四是全固态电池的生产难题,极片制造工艺不成熟,湿法工艺的核心是粘接剂与溶剂选取,如果溶剂与电解质化学不兼容,可能降低电解质的离子电导率。干法工艺存在膜片分散性、均匀性挑战。在电芯致密化成型过程中,电芯内部存在孔隙缺陷,致密度低会降低固态电池性能发挥,极片边缘受压导致搭接短路等问题也需要解决。宁德时代已经建立10Ah级全固态电池验证平台,3年后真正量产据吴凯介绍,宁德时代针对固态电池已经有十余年的研发积累,目前我们组建了一支近千人的全固态电池研发团队,也取得了一些进展和经验。针对正极的界面问题,宁德时代研发了单晶正极多层级全包覆技术,第一层无机氧化物包覆层可以抑制界面副反应,第二层固体电解质包覆层,提升界面离子扩散。多层设计可以大幅提升界面结构稳定性,目前高面容三元正极克容量可达230mAh/g。我们还研发了多功能复合粘结剂,帮助稳定极片导电网络。复合正极可以实现6000次循环。针对锂金属负极使用时候的锂枝晶问题,宁德时代认为相变自填充技术是可行方案,相变介质可通过改变其固/液物理状态灵活修复固态电解质缺陷,达到增强电解质结构,抑制锂枝晶的效果,锂金属临界电流密度有效提升至20mA/cm2。我们通过引入合金金属改变界面层的亲锂性,可以诱导锂金属均匀沉积到表面。同时优化锂金属负极的多相导锂界面,构筑界面离子传输“高速公路”,使锂金属负极循环平均库伦效率>99.9%。针对硫化物电解质的环境稳定性问题,宁德时代开发表面疏水层可逆包覆技术,实现高空气稳定性电解质的制备,包覆后电解质可在-40℃露点环境稳定,包覆层还可以在电池制备过程中除掉,并且几乎不影响电解质材料的性能。同时我们也在开发新型合成路线和低含锂量材料,目前电解质的价格,1公斤都在5万以上,新的合成方案可以降低量产成本。针对制造工艺的难点,宁德时代打通了干/湿法极片制备和电芯一体化成型工艺方案,创新了高柔性核壳结构粘结剂、纤维化过程量化控制技术、超薄电解质转印技术、等静压一体成型技术等,已经建立10Ah级全固态电池验证平台。“全固态电池的研发和量产是一项非常艰巨的工作,我们为此也是集聚了各方力量,广泛的与产业链上的各方、高校等开展联合攻关。从全固态电池的技术成熟度和制造成熟度来看,有望在未来3年逐步进入成熟期,真正开启量产化进程。”吴凯说。0到1的原创性创新最后谈到对全固态电池的思考时,吴凯表示,全固态电池是新质生产力的典型代表。首先,具有革命性突破的技术创新是新质生产力的内在动力,全固态电池的研发不是1到2、2到3的渐进性创新,而是0到1的原创性创新,原创性创新往往拥有很高的势能,能够开辟出新的赛道,并对产业全局产生关键影响。其次,生产要素创新性配置是催生新质生产力的重要保障,全固态电池的研发和制造用传统的研发试错方法或者企业的封闭式的单打独斗是行不通的,我们需要大量运用人工智能、大数据等手段,更广泛地开展多种资源的协调、多条线路的协同和众多团队的合作,将各类优质生产要素能够以更高的效率流向关键核心技术领域,这样才能够进一步加快科技创新效率。最后,现代化产业体系是新质生产力要素的产业载体。全固态电池为代表的新能源产业链,我们认为应该具备低碳、高效、高质量、高附加值、强标准、自主可控、可持续等特征,将牢牢占据市场领先地位,成为汽车强国、制造强国、质量强国的重要支撑。 ... PC版: 手机版:

封面图片

DRAM,走向3D

DRAM,走向3D 早前的DRAM可以满足业界需求,但随着摩尔定律推进速度放缓,DRAM技术工艺也逐渐步入了瓶颈期。从技术角度上看,随着晶体管尺寸越来越小,芯片上集成的晶体管就越多,这意味着一片芯片能实现更高的内存容量。目前DRAM芯片工艺已经突破到了10nm级别。虽然10nm还不是DRAM的最后极限,但多年来随着DRAM制程节点不断缩小,工艺完整性、成本、电容器漏电和干扰、传感裕度等方面的挑战愈发明显,要在更小的空间内实现稳定的电荷存储和读写操作变得日益困难。据Tech Insights分析,通过增高电容器减小面积以提高位密度(即进一步减小单位存储单元面积)的方法即将变得不可行。上图显示,半导体行业预计能够在单位存储单元面积达到约10.4E-4µm2前(也就是大约2025年)维持2D DRAM架构。之后,空间不足将成为问题,这将提升对垂直架构,也就是3D DRAM的需求。另一方面,随着数据量爆炸性增长,尤其是云计算、人工智能、大数据分析等领域对高速、大容量、低延迟内存的需求持续攀升,市场对更高密度、更低功耗、更大带宽的DRAM产品有着强烈需求。在市场需求和技术创新的驱动下,3D DRAM成为了业界迫切想突破DRAM工艺更高极限的新路径。3D DRAM,迎来新进展传统的内存单元数组与内存逻辑电路分占两侧的2D DRAM存储相比,3D DRAM是一种将存储单元(Cell)堆叠至逻辑单元上方的新型存储方式,从而可以在单位晶圆面积上实现更高的容量。采用3D DRAM结构可以加宽晶体管之间的间隙,减少漏电流和干扰。3D DRAM技术打破了内存技术的传统范式。这是一种新颖的存储方法,将存储单元堆叠在逻辑单元之上,从而在单位芯片面积内实现更高的容量。3D DRAM的优势不仅在于容量大,其数据访问速度也快。传统的DRAM在读取和写入数据时需要经过复杂的操作流程,而3D DRAM可以直接通过垂直堆叠的存储单元读取和写入数据,极大地提高了访问速度。此外,3D DRAM还具有低功耗、高可靠性等特点,使其在各种应用场景中都具有显著优势。十多年来,业界一直致力于这个方向,特别是受到3D NAND商业和功能成功的推动。迄今为止,许多3D DRAM概念已经提出并申请了专利,一些主要DRAM厂商正在进行晶圆级测试。3D DRAM技术的专利族趋势,2009年- 2023年预测走势图能看到,自2019年以来,美国申请的专利数量急剧增加,这或许意味着3D DRAM正在迎来新的进展。行业主要厂商正在逐渐加大对3D DRAM技术的开发投入,并且通过专利保护的方式为未来的市场竞争和技术主导权做准备。这种策略反映出3D DRAM技术的战略重要性和潜在的巨大商业价值。厂商,竞逐3D DRAM三星电子雄心勃勃,加速3D DRAM商业化自2019年以来,三星电子一直在进行3D DRAM的研究,并于同年10月宣布了业界首个12层3D-TSV技术。2021年,三星在其DS部门内建立了下一代工艺开发研究团队,专注3D DRAM领域研究。2022年,三星准备通过逻辑堆叠芯片SAINT-D解决DRAM堆叠问题,该设计旨在将8个HBM3芯片集成在一个巨大的中介层芯片上。图源:三星官网2023年5月,三星电子在其半导体研究中心内组建了一个开发团队,大规模生产4F2结构DRAM。由于DRAM单元尺寸已达到极限,三星想将4F2应用于10nm级工艺或更先进制程的DRAM。据报道,如果三星的4F2 DRAM存储单元结构研究成功,在不改变制程的情况下,裸片面积可比现有6F2 DRAM存储单元减少约30%。同年10月,三星电子宣布计划在下一代10nm或更低的DRAM中引入新的3D结构,旨在克服3D垂直结构缩小芯片面积的限制并提高性能,将一颗芯片的容量增加100G以上。今年早些时候,三星电子还在美国硅谷开设了一个新的R&D研究实验室,专注于下一代3D DRAM芯片的开发。能看到,三星电子聚焦3D DRAM市场,一直在开发新技术。在近日举行的Memcon 2024上,三星电子再次公布了其关于3D DRAM开发的雄心勃勃计划,并明确表示将在2030年前实现这一技术的商业化。图源 Semiconductor Engineering三星电子副社长李时宇在会上详细介绍了4F2 Square VCT DRAM及3D DRAM的研发进展,显示出三星在紧凑型高密度内存领域的领先地位。4F2 Square VCT DRAM是一种基于VCT(垂直沟道晶体管)技术的紧凑型DRAM设计。上文提到,4F2 Square VCT DRAM通过垂直堆叠技术,将DRAM单元尺寸比现有的6F2 Square DRAM减少约30%,在提高能效的同时大幅降低了单元面积。然而,实现这一技术并非易事。三星指出,4F2 Square VCT DRAM的开发需要极高的制造精度和更优质的生产材料,还需要解决新材料的应用问题,如氧化沟道材料和铁电体的研发。相较于在DRAM单元结构上向z方向发展的VCT DRAM,三星电子还聚焦在VS-CAT(Vertical Stacked-Cell Array Transistor,垂直堆叠单元阵列晶体管)DRAM上,该技术类似3D NAND一样堆叠多层DRAM。除通过堆叠提升容量外,VS-CAT DRAM 还能降低电流干扰。三星电子预计其将采用存储单元和外围逻辑单元分离的双晶圆结构,因为延续传统的单晶圆设计会带来严重的面积开销。在分别完成存储单元晶圆和逻辑单元晶圆的生产后,需要进行晶圆对晶圆(W2W)混合键合,才能得到 VS-CAT DRAM成品。据悉,目前三星电子已在内部实现了16层堆叠的VS-CAT DRAM。三星电子还在会议上探讨了将BSPDN背面供电技术用于3D DRAM内存的可能性,认为该技术有助于于未来对单个内存bank的精细供电调节。尽管东京电子预测VCT DRAM的商用化要到2027年才能实现,但三星内部对3D DRAM的商业化充满信心,计划在2025年内部发布4F2 Square工艺,并逐步推进3D DRAM的研发,预计在2030年之前推出市场。SK海力士:聚焦3D DRAM新一代沟道材料SK海力士也在积极研发3D DRAM。SK海力士表示,3D DRAM可以解决带宽和延迟方面的挑战,并已在2021年开始研究。据韩媒Business Korea去年的报道,SK海力士提出了将IGZO作为3D DRAM的新一代沟道材料。IGZO是由铟、镓、氧化锌组成的金属氧化物材料,大致分为非晶质IGZO和晶化IGZO。其中,晶化IGZO是一种物理、化学稳定的材料,在半导体工艺过程中可保持均匀的结构,SK海力士研究的正是这种材料,其最大优势是其低待机功耗,这种特点适合要求长续航时间的DRAM芯晶体管,改善DRAM的刷新特性。据透露,SK海力士将会在今年披露3D DRAM电气特性的相关细节,到时候公司将会明确3D DRAM的发展方向。美光:专利数量遥遥领先3D DRAM领域的技术竞争正在加剧。据TechInsights称,美光在2019年就开始了3D DRAM的研究工作。截止2022年8月,美光已获得了30多项3D DRAM专利。相比之下,美光专利数量是三星和SK海力士这两家韩国芯片制造商的两三倍。在2022年9月接受采访的时候,美光公司确认正在探索3D DARM的方案。美光表示,3D DRAM正在被讨论作为继续扩展DRAM的下一步。为了实现3D DRAM,整个行业都在积极研究,从制造设备的开发、先进的ALD、选择性气相沉积、选择性蚀刻,再到架构的讨论。美光的3D DRAM方案,网上并没有看到太多介绍。不过据Yole强调,美光提交了与三星电子不同的3D DRAM专利申请。美光的方法是在不放置Cell的情况下改变晶体管和电容器的形状。除此以外,Applied Materials和Lam Research等全球半导体设备制造商也开始开发与3D DRAM相关的解决方案。NEO:推出3D X-DRAM技术除了存储三巨头之外,还有行业相关公司也在进行3D DRAM的开发。例如,美国存储器技术公司NEO Semiconductor推出了一种名为3D X-DRAM的技术,旨在克服DRAM的容量限制。3D X-DRAM的单元阵列结构类似于3D NAND Flash,采用了FBC(无电容器浮体单元)技术,它可以通过添加层掩模形成垂直结构,从而实现高良率、低成本和显著的密度提升。图源:NE... PC版: 手机版:

封面图片

金刚石芯片商用在即 性能优秀成本却高出上万倍

金刚石芯片商用在即 性能优秀成本却高出上万倍 而在氮化镓和碳化硅之后,金刚石也就是钻石,作为一种新半导体材料闯入了大家的视线当中,并引发了研究人员和行业专家的关注。金刚石以其无与伦比的硬度和亮度而闻名,半个多世纪以来,珠宝首饰是它最广泛也是最有价值的用途,如今它又因自己的特性,在半导体材料中开辟了一番广阔的前景。金刚石芯片,有何优势与现有的半导体材料相比,金刚石主要具有三大优势:热管理、成本/效率优化和二氧化碳减排。在所有传统的功率转换器中,冷却系统都是一个必要的累赘。与大多数半导体材料不同,金刚石的电阻率随温度升高而降低。因此,用这种材料制成的设备在 150 摄氏度(功率设备的典型工作温度)下比在室温下性能更好。虽然必须花费大量精力来冷却暴露在高温下的硅或碳化硅器件,但只需让金刚石在运行过程中找到一个稳定的状态即可。金刚石还是一种良好的散热器。由于散热损耗少、散热能力强且能在高温下工作,用金刚石有源器件制成的转换器可以比基于硅的解决方案轻 5 倍、小 5 倍,比基于碳化硅的解决方案轻 3 倍、小 3 倍。在设计设备和转换器时,必须在系统的能效与成本、尺寸和重量之间做出权衡。金刚石也不例外,但金刚石能在关键参数上为更节能的电动汽车带来价值。如果重点是降低设备成本,那么可以设计出比碳化硅芯片成本低 30% 的金刚石芯片,因为在电气性能和效率相同的情况下,金刚石芯片比同等的碳化硅芯片少消耗 50 倍的金刚石面积,而且热管理更好。如果注重效率,金刚石与碳化硅相比,可将能量损耗降低三倍,芯片体积最多可缩小 4 倍,从而直接节省能耗。如果侧重于系统体积和重量,通过提高开关频率,金刚石器件可将无源元件的体积比基于碳化硅的转换器减少四倍。除了体积上的减少之外,还可以通过缩小散热器来实现。值得一提的是,金刚石还具备极高的绝缘性。衡量不同材料绝缘性好坏的一大重要指标是击穿电场强度,表示材料能承受的最大电压不造成电击穿。作为对比,硅材料的击穿电场强度为0.3 MV/cm左右,SiC为3 MV/cm,GaN为5 MV/cm,而钻石则为10 MV/cm,而且即使是非常薄的钻石切片也具有非常高的电绝缘性,能够抵抗非常高的电压。从具体用途来看,金刚石基板具有优异的导热性,可为高功率 5G 元件(基站、放大器)实现高效散热,确保运行稳定性并防止过热。5G 基础设施的不断推出和对更快数据速度的无限需求,推动了各种 5G 相关设备对金刚石基板的采用。5G 数据流量的指数级增长意味着需要设备能够管理在极高频率下产生的大功率密度。金刚石衬底为这些问题提供了答案。此外,与传统的硅基解决方案相比,金刚石衬底与氮化镓或碳化硅配对,可制造出工作电压更高、频率更高、能效更高的功率器件,电动汽车、用于可再生能源的电源逆变器、工业电机驱动器、大功率激光器和先进电源都是金刚石衬底应用日益广泛的领域。金刚石衬底作为出色的散热器,可以延长这些设备的使用寿命和可靠性。而随着向更清洁能源的过渡和汽车电气化进程的加快,金刚石衬底也将发挥至关重要的作用。尽量减少功率转换过程中的能量损耗可以提高整体效率,这是电动汽车和可持续电网的一个重要方面。金刚石基底能够设计出更紧凑、重量更轻的电力电子器件,这对电动汽车等空间受限的应用至关重要。国外的Virtuemarket的数据指出,2023年全球金刚石半导体基材市场价值为1.51亿美元,预计到2030年底市场规模将达到3.42亿美元。在2024-2030年的预测期内,该市场预计将以复合年增长率增长12.3%。其认为,在中国、日本和韩国等国家电子和半导体行业不断增长的需求的推动下,亚太地区预计将主导金刚石半导体衬底市场,到 2023 年将占全球收入份额的 40% 以上。金刚石芯片,面临挑战当然,性能如此优秀的半导体材料,在其他方面不免受到一些限制。首先就是成本。与硅相比,碳化硅的成本是其 30 到 40 倍,而氮化镓的成本是其 650 到 1300 倍。用于半导体研究的合成金刚石材料的价格约为硅的 10000 倍。另一个问题是金刚石晶片尺寸太小,市场上最大的金刚石晶片尺寸还不到 10 平方毫米。使用离子注入法掺杂这种材料很困难,而且这种材料的电荷载流子活化效率在室温下会降低。为了解决生产应用方面的问题,不少公司都在努力攻关金刚石量产的相关技术。2023年初,日本佐贺大学与日本Orbray共同合作开发了金刚石制成的功率半导体,他们在蓝宝石衬底上制成2英寸的单晶圆,2023年10月,美国的Diamond Foundry于成功制造出了世界上第一块单晶钻石晶圆,直径约4英寸。除了上述两家公司外,位于法国格勒诺布尔的半导体金刚石初创公司Diamfab也在为了金刚石芯片的技术而不断努力。今年3月,该公司宣布获得870万欧元的首轮融资。这笔资金来自Asterion Ventures、法国政府代表法国政府管理的法国科技种子基金(法国2030的一部分)、Kreaxi与Avenir Industrie Auvergne-Rhône-Alpes地区基金、Better Angle、Hello Tomorrow和格勒诺布尔阿尔卑斯大区。Diamfab 是法国国家科学研究中心(CNRS)实验室奈尔研究所(Institut Néel)的衍生产品,也是 30 年来合成金刚石生长研发的成果。Diamfab 项目最初在格勒诺布尔阿尔卑斯 SATT Linksium 进行孵化,该公司于 2019 年 3 月成立,由两位纳米电子学博士和半导体金刚石领域公认的研究人员 Gauthier Chicot 和 Khaled Driche 创办。Diamfab表示,为了满足汽车、可再生能源和量子产业的半导体和功率元件市场需求,公司在合成金刚石的外延和掺杂领域开发出了突破性技术。其在合成金刚石的外延和掺杂领域开发出了突破性技术,并拥有四项专利,其专长在于薄金刚石层的生长和掺杂,以及金刚石电子元件的设计。第一轮融资将使 Diamfab 能够建立一条试验生产线,对其技术进行工业化前处理,加速其发展,从而满足对金刚石半导体日益增长的需求。Diamfab此前已经申请了全金刚石电容器的专利,并正在与该领域的领先企业合作, Diamfab 首席执行官 Gauthier Chicot 说道:“在其他参数中,我们已经实现了我们的目标:超过 1000A/cm2 的高电流密度和大于 7.7MV/cm 的击穿电场。这些是未来设备性能的关键参数,并且已经优于 SiC 等现有材料为电力电子设备提供的参数。此外,我们有一个明确的路线图,到 2025 年实现 4 英寸晶圆,作为大规模生产的关键推动因素。”“在过去的两年中,我们在与研发团队合作加工高附加值金刚石晶片方面取得了重大进展。现在,我们基于双重业务模式的应用导向方法将使我们能够与更广泛的工业合作伙伴合作,开发和销售高附加值金刚石晶片和我们的专利金刚石设备制造工艺,同时还能以轻型工厂模式直接向最终用户销售产品,”Chicot 说。“在像我们这样的尖端产业的发展过程中,每个阶段都至关重要。试点项目将促进我们与合作伙伴的许多讨论,并加强我们之间的关系。与致力于该行业和气候的投资者合作,最重要的是他们了解该行业的制约因素和联系,这一点至关重要,” Chicot表示。“我们开发的技术可以大大减少半导体的历史碳足迹,并通过转移欧洲的关键产业来实现这一目标,这也是我们与 Asterion 合作的投资重点之一,”负责此次交易的 Asterion Ventures 合伙人 Charles-Henry Choel 解释说,“工业深度技术公司需要冷静、长期的支持,而这正是我们所能提供的。”无独有偶,美国的Advent Diamond也是这样一家致力于将金刚... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人