一个用于传输中的嵌套、非结构化、多模态数据的库,包括文本、图像、音频、视频、3D 网格等。它允许深度学习工程师使用 Python

一个用于传输中的嵌套、非结构化、多模态数据的库,包括文本、图像、音频、视频、3D 网格等。它允许深度学习工程师使用 Pythonic API 高效地处理、嵌入、搜索、推荐、存储和传输多模态数据。 跨/多模态世界的大门:用于表示复杂/混合/嵌套文本、图像、视频、音频、3D 网格数据的超表现力数据结构。吉娜的基础数据结构,CLIP-即服务,DALL·E流,迪斯科艺术等 数据科学强国:通过CPU/GPU上的Torch/TensorFlow/ONNX/PaddlePaddle,大大加快数据科学家在嵌入、k-NN匹配、查询、可视化和评估方面的工作。 传输中的数据:针对网络通信进行了优化,随时可以在线连接,在 Protobuf、bytes、base64、JSON、CSV、DataFrame 中进行快速和压缩的序列化。非常适合流式传输和内存不足数据。 一站式k-NN:主流矢量数据库的统一一致的API,允许最近的邻居搜索,包括Elasticsearch,Redis,ANNLite,Qdrant,Weaviate。 对于现代应用程序:GraphQL 支持使您的服务器在请求和响应时具有多功能性;内置的数据验证和 JSON 架构 (OpenAPI) 可帮助您构建可靠的 Web 服务。 Pythonic 体验:设计得像 Python 列表一样简单。如果你知道如何Python,你就知道如何DocArray。直观的习语和类型注释简化了您编写的代码。 与IDE集成:在Jupyter笔记本和Google Colab上实现漂亮的打印和可视化;PyCharm & VS Code 中的全面自动完成和类型提示。 DocArray由三个简单的概念组成: 文档:一种数据结构,用于轻松表示嵌套的非结构化数据。 DocumentArray:用于高效访问、操作和理解多个文档的容器。 数据类:用于直观地表示多模态数据的高级 API。 | #数据库

相关推荐

封面图片

一种为机器学习而生的数据结构,非结构化多模态数据的数据结构

一种为机器学习而生的数据结构,非结构化多模态数据的数据结构 DocArray是一个库,用于存储传输中的嵌套、非结构化、多模态数据,包括文本、图像、音频、视频、3D 网格等。它允许深度学习工程师使用Pythonic API有效地处理,嵌入,搜索,推荐,存储和传输多模态数据 跨/多模式世界之门:用于表示复杂/混合/嵌套文本、图像、视频、音频、3D 网格数据的超表达数据结构。、、、等基础数据结构。 数据科学强国:通过 CPU/GPU 上的 Torch/TensorFlow/ONNX/PaddlePaddle 大大加快数据科学家在嵌入、k-NN 匹配、查询、可视化和评估方面的工作。 传输中的数据:针对网络通信进行了优化,随时可以使用 Protobuf、字节、base64、JSON、CSV、DataFrame 中的快速压缩序列化。非常适合流式传输和内存不足的数据。 一站式K-NN:主流向量数据库的统一且一致的API,允许最近邻搜索,包括Elasticsearch、Redis、ANNLite、Qdrant、Weaviate。 对于现代应用程序:GraphQL 支持使您的服务器在请求和响应方面具有通用性;内置数据验证和 JSON Schema (OpenAPI) 帮助您构建可靠的 Web 服务。 Pythonic:设计得像 Python 列表一样简单。如果你知道如何使用 Python,你就会知道如何使用 DocArray。直观的习惯用法和类型注释简化了您编写的代码。 与IDE集成:Jupyter notebook 和 Google Colab 上的漂亮打印和可视化;PyCharm 和 VS Code 中的全面自动完成和类型提示。 || #机器学习

封面图片

:一个对话式搜索和分析平台,适用于复杂的非结构化数据,例如文档、演示文稿、成绩单、嵌入式表格和内部知识存储库。

:一个对话式搜索和分析平台,适用于复杂的非结构化数据,例如文档、演示文稿、成绩单、嵌入式表格和内部知识存储库。 它通过将人工智能引入数据准备、索引和检索来检索和综合高质量的答案。 Sycamore 可以轻松准备用于搜索和分析的非结构化数据,提供用于数据清理、信息提取、丰富、汇总和生成封装数据语义的向量嵌入的工具包。 Sycamore 使用你选择的生成式 AI 模型来使这些操作变得简单而有效,并且可以实现快速实验和迭代。此外,Sycamore 使用 OpenSearch 进行索引,支持混合(向量 + 关键字)搜索、检索增强生成 (RAG) 管道、过滤、分析功能、会话记忆和其他功能来改进信息检索。 特征 自然语言、对话界面,可针对非结构化数据提出复杂问题。包括对来源段落和对话记忆的引用。 包括对非结构化数据的各种查询操作,包括混合搜索、检索增强生成 (RAG) 和分析函数。 通过高级数据分段、用于数据丰富的 LLM 支持的 UDF、使用 Python 进行的高性能数据操作以及使用各种 AI 模型的向量嵌入,准备和丰富用于搜索和分析的复杂非结构化数据。 自动数据爬虫(Amazon S3 和 HTTP)和 Jupyter 笔记本支持等有用的功能可用于创建和迭代数据准备脚本。 可扩展、安全且可定制的 OpenSearch 后端,用于索引和数据检索。

封面图片

开源多媒体AI内容搜索引擎,专为内容创作者设计,支持文本/图像和短视频内容的丰富信息提取方法,集成非结构化文本/图像和短信息

开源多媒体AI内容搜索引擎,专为内容创作者设计,支持文本/图像和短视频内容的丰富信息提取方法,集成非结构化文本/图像和短视频信息,构建多模态RAG内容问答系统,旨在以开源方式分享和交流AI内容创作的想法 | #搜索引擎

封面图片

用于评估大型语言模型(LLM) Agent在多步多模态任务中的工具使能力的基准数据集,包含超过 4000 个多步多模态任务,这些

用于评估大型语言模型(LLM) Agent在多步多模态任务中的工具使能力的基准数据集,包含超过 4000 个多步多模态任务,这些任务涉及 33 种工具,包括 13 种多模态模型、9 个公共 API 和 11 个图像处理模块 | #数据集

封面图片

《21天结构化思维训练营(圈外)》

《21天结构化思维训练营(圈外)》 简介:21天结构化思维训练营(圈外)是一门系统性的学习课程,涵盖相关领域的核心知识。通过详尽的讲解和案例分析,帮助学习者深入理解课程主题,提高实践应用能力,适合希望扩展知识储备、提升专业技能的学员。 标签: #知识#学习资源#技能提升 文件大小:NG 链接:

封面图片

数据结构与算法Python版 - 北京大学

数据结构与算法Python版 - 北京大学 描述:本课基于主讲教师在北京大学讲授数据结构与算法课(Python版)的多年教学实践经验,面向具有Python语言程序设计基础的大学生和社会公众,介绍常见的基本数据结构以及相关经典算法,强调问题-数据-算法的抽象过程,关注数据结构与算法的时间空间效率,培养学生编写出高效程序,具备解决问题的综合能力。 链接: 大小:NG 标签:#学习 #知识 #课程 #资源 来自:雷锋 频道:@Aliyundrive_Share_Channel 群组:@alyd_g 投稿:@AliYunPanBot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人