| #指南本项目是一个围绕开源大模型、针对国内初学者、基于 AutoDL 平台的中国宝宝专属大模型教程,针对各类开源大模型提供包

| #指南 本项目是一个围绕开源大模型、针对国内初学者、基于 AutoDL 平台的中国宝宝专属大模型教程,针对各类开源大模型提供包括环境配置、本地部署、高效微调等技能在内的全流程指导,简化开源大模型的部署、使用和应用流程,让更多的普通学生、研究者更好地使用开源大模型,帮助开源、自由的大模型更快融入到普通学习者的生活中。 本项目的主要内容包括: 基于 AutoDL 平台(可扩展,例如阿里云)的开源 LLM 环境配置指南,针对不同模型要求提供不同的详细环境配置步骤; 针对国内外主流开源 LLM 的部署使用教程,包括 LLaMA、ChatGLM、InternLM 等; 开源 LLM 的部署应用指导,包括命令行调用、在线 Demo 部署、LangChain 框架集成等; 开源 LLM 的全量微调、高效微调方法,包括分布式全量微调、LoRA、ptuning 等。 本项目适合以下学习者: 想要使用或体验 LLM,但无条件获得或使用相关 API; 希望长期、低成本、大量应用 LLM; 对开源 LLM 感兴趣,想要亲自上手开源 LLM; NLP 在学,希望进一步学习 LLM; 希望结合开源 LLM,打造领域特色的私域 LLM; 以及最广大、最普通的学生群体。

相关推荐

封面图片

《》基于Linux环境快速部署开源大模型 | #指南

《》基于Linux环境快速部署开源大模型 | #指南 本项目是一个围绕开源大模型、针对国内初学者、基于 AutoDL 平台的中国宝宝专属大模型教程,针对各类开源大模型提供包括环境配置、本地部署、高效微调等技能在内的全流程指导,简化开源大模型的部署、使用和应用流程,让更多的普通学生、研究者更好地使用开源大模型,帮助开源、自由的大模型更快融入到普通学习者的生活中。 本项目的主要内容包括: 基于 AutoDL 平台(可扩展,例如阿里云)的开源 LLM 环境配置指南,针对不同模型要求提供不同的详细环境配置步骤; 针对国内外主流开源 LLM 的部署使用教程,包括 LLaMA、ChatGLM、InternLM 等; 开源 LLM 的部署应用指导,包括命令行调用、在线 Demo 部署、LangChain 框架集成等; 开源 LLM 的全量微调、高效微调方法,包括分布式全量微调、LoRA、ptuning 等。

封面图片

:一个开源引擎,用于微调和提供大型语言模型的服务,是定制和提供LLM的最简单方式

:一个开源引擎,用于微调和提供大型语言模型的服务,是定制和提供LLM的最简单方式 主要特征 适用于你喜爱的模型的即用型 API:部署和服务开源基础模型 - 包括 LLaMA、MPT 和 Falcon。使用 Scale 托管模型或部署到您自己的基础设施。 微调基础模型:根据您自己的数据微调开源基础模型,以优化性能。 优化推理:LLM Engine 提供推理 API,用于流式响应和动态批处理输入,以实现更高的吞吐量和更低的延迟。 开源集成: 使用单个命令部署任何。 即将推出的功能 K8s 安装文档:我们正在努力记录您自己的基础设施上推理和微调功能的安装和维护。目前,我们的文档涵盖了使用我们的客户端库访问 Scale 的托管基础​​设施。 快速冷启动时间:为了防止 GPU 闲置,LLM Engine 在不使用模型时会自动将模型缩放为零,并在几秒钟内扩展,即使对于大型基础模型也是如此。 成本优化:部署人工智能模型比商业模型更便宜,包括冷启动和预热时间。

封面图片

Databricks 发布开源指令微调大语言模型 Dolly 2.0

Databricks 发布开源指令微调大语言模型 Dolly 2.0 Databricks 公司两周前发布了它的指令遵循(instruction-following)大语言模型 Dolly,本周三它发布了可授权商业使用的开源指令微调大语言模型。Dolly 2.0 有 120 亿参数,基于 EleutherAI pythia 模型家族,使用高质量的人类生成的指令遵循数据集进行微调。Databricks 开源了 Dolly 2.0 的整个系统,包括训练代码、数据集和模型权重,全都适合商业使用。而目前开源社区流行的 LLaMA 衍生模型使用的是非商业使用授权。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

Google 发布开源大语言模型 Gemma

Google 发布开源大语言模型 Gemma 谷歌今天宣布推出 Gemma,这是一个新的轻量级开源大语言模型系列。 现在 Gemma 2B 和 Gemma 7B 两个模型已经可用,每个尺寸都发布了经过预训练和指令调整的变体。谷歌同时提供了多项工具以便快速部署该模型,包括开箱即用的 Colab 实例,可快速部署的容器镜像,以及和其它流行开发工具的集成。 Gemma 模型也能够直接在开发人员笔记本电脑或台式计算机上运行。根据谷歌的,该模型在多个测试中超越的 Llama 2 等开源模型。这些新模型“受到 Gemini 的启发”,使用与其相似的技术,并被许可用于商业和研究用途。 此外,谷歌还发布了一个新的负责任的生成式AI工具包,以提供“使用 Gemma 创建更安全的人工智能应用程序的指导和基本工具”以及调试工具。 , ,

封面图片

modihand:独立部署,训练属于你的文本大模型

modihand:独立部署,训练属于你的文本大模型 只需要上传你的 json 数据集,然后在网页点几下,就可以训练属于你的文本大模型 支持 Lora,Ptuning,Freeze 等多种微调训练方式;支持多个开源大模型作为基底,可以完整下载训练完的模型权重,自己部署,断网离线使用

封面图片

Databricks 发布最大开源大语言模型 DBRX

Databricks 发布最大开源大语言模型 DBRX 美国AI初创公司Databricks周三公布,该公司开发的通用大语言模型 DBRX将开源。DBRX在语言理解、编程、数学和逻辑方面轻松击败了Meta的Llama 2-70B、法国MixtralAI公司的Mixtral 和 马斯克旗下xAI开发的Grok-1这类当前流行的开源模型。DBRX 在 30多种不同的最先进模型(SOTA) 基准指标测试中,均优于前述三种大模型。 DBRX 使用混合专家架构(MoE) ,拥有16个专家模型,共1320亿参数。该模型使用 3072 英伟达 H100 GPU在12万亿个token的数据集上进行训练,最大支持32k 的上下文窗口。同时,Databrick 也开源了该模型经过指令微调(instruct finetune)的版本。 ,

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人