YY 在 GitHub 开源的一款高性能、轻量级神经网络部署 #框架 :。

YY 在 GitHub 开源的一款高性能、轻量级神经网络部署 #框架 :。 可将真实人脸快速转换为迪士尼、3D 游戏、油画画像风格的人脸外形,并提供了适配多场景的目标检测、物品分割、对象识别等功能。 已为 Hago、VOO、VFlyCloud、VFly、 马克水印相机等 App 提供 20 余种 AI 能力的支持,覆盖直播、短视频、视频编辑等泛娱乐场景和工程场景

相关推荐

封面图片

:一款开源的数据分析引擎。拥有低代码、高性能、轻量级和全功能的特点,相较于传统 SQL 技术,使用 esProc SPL 可以显

:一款开源的数据分析引擎。拥有低代码、高性能、轻量级和全功能的特点,相较于传统 SQL 技术,使用 esProc SPL 可以显著降低整体应用成本。 由于 SPL 面向结构化和半结构化数据,因此还可用作分析型数据库和数据计算中间件,应用于线下跑批和在线查询场景。 其独创的 SPL 语法使编码更简单且运行效率更高。技术特性包括:算法引擎、存储引擎、多源混算、并行框架、敏捷语法、嵌入集成、数据固化和实时数据。 SPL 支持多数据源混合计算,可无缝集成到应用中,具备良好的集成性和轻量级特性。在性能、开发效率、灵活性和资源节约等方面具有显著优势。

封面图片

开源的基础模型能力评测框架,提供了一套轻量级、易于使用的评测体系,支持主流大模型的性能评估。

开源的基础模型能力评测框架,提供了一套轻量级、易于使用的评测体系,支持主流大模型的性能评估。 其主要特点如下: 轻量易用的评估框架:无缝设计,界面直观,依赖性极小,部署轻松,可扩展性极佳,适应多样化评估场景。 评估方式灵活多样:支持统一提示模板,评估指标丰富,可个性化定制,满足特定需求。 高效、快速的推理部署:支持torch、vLLM等多种模型部署策略,实现多实例部署,实现快速评估流程。 公开透明的开源排行榜:维护开放、可追溯、可复制的评估排行榜,由社区更新驱动,以确保透明度和可信度。 官方权威评测数据:采用广泛认可的官方评测集,确保评测的公平性和标准化,确保结果具有可比性和可重复性。 全面而广泛的模型支持:为广泛的模型提供支持,包括来自 Huggingface 开源存储库的模型和个人训练的模型,确保全面的覆盖范围。 | #框架

封面图片

这是一款轻量级、先进的开源模型,供开发者和研究人员用于 AI 构建。Gemma 模型家族包括 Gemma 2B 和 Gemma

这是一款轻量级、先进的开源模型,供开发者和研究人员用于 AI 构建。Gemma 模型家族包括 Gemma 2B 和 Gemma 7B 两种尺寸, 能够在不同的设备类型上运行,包括笔记本电脑、桌面电脑、IoT 设备、移动设备和云端。性能和设计 Gemma 模型在技术和基础设施组件上与 Gemini 共享,这使得 Gemma 2B 和 7B 在其大小范围内相比其他开放模型具有最佳性能。 Gemma 模型不仅可以直接在开发者的笔记本电脑或桌面电脑上运行,而且在关键基准测试中的表现超过了更大的模型,同时遵循严格的安全和负责任输出标准。 主要特点: 1、轻量级、高性能模型:Gemma 模型家族包括 Gemma 2B 和 Gemma 7B.两种尺寸,提供预训练和指令调优的变体,针对其大小范围内相比其他开放模型具有最佳性能。 2、跨框架工具链支持:支持 JAX、PyTorch 和 TensorFlow 通过原生 Keras 3.0.进行推理和监督式微调(SFT),适应多种开发需求和环境。 3、易于入门和集成:提供准备就绪的 Colab 和 Kaggle 笔记本,以及与 Hugging Face、MaxText、NVIDIA NeMo.和 TensorRT-LLM 等流行工具的集成,方便开发者快速上手。 4.高效的运算能力:针对多个 AI 硬件平台上进行优化,确保在 NVIDIA GPU 和 Google Cloud TPU 上的行业领先性能。通过与 NVIDIA 的合作,无论是在数据中心、云端还是本地 RTX AI PC 上,都确保了行业领先的性能和与尖端技术的集成。 Gemma 模型能够在不同的设备类型上运行,这种广泛的兼容性使得模型能够适应各种应用场景和需求。 Hugging Face 测试链接: via 匿名 标签: #Google #Gemma 频道: @GodlyNews1 投稿: @GodlyNewsBot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人