一款使用C语言(ANSI C90)构建跨平台桌面应用程序的专业SDK。NAppGUI是在操作系统原生api之上构建的一个轻量级层

一款使用C语言(ANSI C90)构建跨平台桌面应用程序的专业SDK。NAppGUI是在操作系统原生api之上构建的一个轻量级层,它允许创建可移植的程序,速度极快,体积很小,不需要任何外部依赖 | #框架

相关推荐

封面图片

Neutralinojs – 使用 JavaScript 构建轻量级跨平台桌面应用程序。 ​​​|| #框架

Neutralinojs – 使用 JavaScript 构建轻量级跨平台桌面应用程序。 ​​​|| #框架 Neutralinojs 是一个轻量级、可移植的桌面应用程序开发框架。它允许你使用 JavaScript、HTML 和 CSS 开发轻量级的跨平台桌面应用程序。你可以使用任何编程语言(通过扩展 IPC)扩展 Neutralinojs,并将 Neutralinojs 用作任何源文件的一部分(通过子进程 IPC)。 在 Electron 和 NWjs 中,你必须安装 Node.js 和数百个依赖库。嵌入式 Chromium 和 Node 让简单的应用变得臃肿。Neutralinojs 提供了一个轻量级和可移植的 SDK,它是 Electron 和 NW.js 的替代品。Neutralinojs 不捆绑 Chromium,而是使用操作系统中现有的 Web 浏览器库(例如:Linux 上的 gtk-webkit2)。Neutralinojs 为本机操作实现了一个 WebSocket 连接,并嵌入了一个静态 Web 服务器来提供 Web 内容。此外,它还为开发人员提供了一个内置的 JavaScript 客户端库。 功能: 便携式开发套件。 应用程序开发人员无需编译。 用户不需要额外的依赖项。 原生功能支持:读取文件、运行系统命令等。 与基于铬节点的框架相比,资源占用更少。 跨平台:Neutralinojs 应用程序适用于 Linux、Windows、macOS 和 Web。 简单灵活的开发环境。

封面图片

《ImTip - 强大轻量级多功能智能桌面助手 》

《ImTip - 强大轻量级多功能智能桌面助手 》 简介:ImTip - 强大轻量级多功能智能桌面助手是一本围绕其核心主题展开的深刻探索之作,书中详细讨论了与其主题相关的各类观点与现实应用,带给读者全新的思考视角。这本书为那些想深入了解相关领域的读者提供了充实的内容,值得一读。更多详情请访问相关链接。 标签: #ImT#ImTip - 强大轻量级多功能智能桌面助手#书籍 文件大小:NG 链接:https://pan.quark.cn/s/0c72199046b6

封面图片

- 跨平台、轻量级、可移植的桌面应用程序开发 #框架 ,可以在 Linux、macOS、Windows、Web 和 Chrome

- 跨平台、轻量级、可移植的桌面应用程序开发 #框架 ,可以在 Linux、macOS、Windows、Web 和 Chrome 上运行,可使用任何编程语言(通过扩展 IPC)扩展 Neutralinojs,并将 Neutralinojs 用作任何源文件的一部分(通过子进程 IPC)

封面图片

,一个开源的轻量级知识分享、团队协同软件,可用于快速构建企业 Wiki 和团队知识分享平台。

,一个开源的轻量级知识分享、团队协同软件,可用于快速构建企业 Wiki 和团队知识分享平台。 提供方便的安装界面程序,无需任何手动操作。部署方便,使用简单。具备完善的系统权限管理,系统可以自定义角色,可为不同角色授予不同的权限

封面图片

为了让开发者也能用上 AI 大型语言模型 (LLM) 的能力,微软在 GitHub 上开源了一个轻量级 SDK:,可以说是部分

为了让开发者也能用上 AI 大型语言模型 (LLM) 的能力,微软在 GitHub 上开源了一个轻量级 SDK:,可以说是部分 Copilot 的解决方案。 该 SDK 支持和封装了来自最新 AI 研究的多种设计模式,以便开发人员可以将复杂的 技能注入他们的应用程序。 SDK 提供了提示链、递归推理、总结、零 / 少样本学习、上下文记忆、长期记忆、嵌入、语义索引、规划和访问外部知识存储以及内部数据等功能。

封面图片

这是一款轻量级、先进的开源模型,供开发者和研究人员用于 AI 构建。Gemma 模型家族包括 Gemma 2B 和 Gemma

这是一款轻量级、先进的开源模型,供开发者和研究人员用于 AI 构建。Gemma 模型家族包括 Gemma 2B 和 Gemma 7B 两种尺寸, 能够在不同的设备类型上运行,包括笔记本电脑、桌面电脑、IoT 设备、移动设备和云端。性能和设计 Gemma 模型在技术和基础设施组件上与 Gemini 共享,这使得 Gemma 2B 和 7B 在其大小范围内相比其他开放模型具有最佳性能。 Gemma 模型不仅可以直接在开发者的笔记本电脑或桌面电脑上运行,而且在关键基准测试中的表现超过了更大的模型,同时遵循严格的安全和负责任输出标准。 主要特点: 1、轻量级、高性能模型:Gemma 模型家族包括 Gemma 2B 和 Gemma 7B.两种尺寸,提供预训练和指令调优的变体,针对其大小范围内相比其他开放模型具有最佳性能。 2、跨框架工具链支持:支持 JAX、PyTorch 和 TensorFlow 通过原生 Keras 3.0.进行推理和监督式微调(SFT),适应多种开发需求和环境。 3、易于入门和集成:提供准备就绪的 Colab 和 Kaggle 笔记本,以及与 Hugging Face、MaxText、NVIDIA NeMo.和 TensorRT-LLM 等流行工具的集成,方便开发者快速上手。 4.高效的运算能力:针对多个 AI 硬件平台上进行优化,确保在 NVIDIA GPU 和 Google Cloud TPU 上的行业领先性能。通过与 NVIDIA 的合作,无论是在数据中心、云端还是本地 RTX AI PC 上,都确保了行业领先的性能和与尖端技术的集成。 Gemma 模型能够在不同的设备类型上运行,这种广泛的兼容性使得模型能够适应各种应用场景和需求。 Hugging Face 测试链接: via 匿名 标签: #Google #Gemma 频道: @GodlyNews1 投稿: @GodlyNewsBot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人