:总结Prompt&LLM论文,开源数据&模型,AIGC应用

None

相关推荐

封面图片

开源LLM微调训练指南:如何打造属于自己的LLM模型

封面图片

读论文:一篇有趣的论文:用11种情感刺激prompt来提升LLM的性能

读论文:一篇有趣的论文:用11种情感刺激prompt来提升LLM的性能 : 这些prompting来自三种心理学理论: 1. 自我检测(self-monitoring):强调产出的重要性,让模型自己检查一下产出。例如‘这个结果对我的工作非常重要,‘你最好保证这个答案是对的’等等,鼓励语言模型自我监测结果。 2. 社会认知理论(social-cognitive):对语言模型信心和目标给予积极肯定,来调节其情绪。例如‘你确认这是最终回答吗?相信你的能力和努力,你的努力会产出卓越的结果的’ 3. 情绪调节理论(cognitive-emotion):通过让语言模型重新审视问题,规范他用客观的态度来看问题。例如‘你确定吗?’ 文章发现了为什么这样的prompt会起作用: 通过注意力分析,发现这些情感prompt的注意力权重较高,说明这些token在注意力层很受重视,也说明情感prompt深度参与了模型的推断过程 文章也发现了情感prompt作用的一些规律: 1. 模型参数越大,情感prompt越管用 2. 任务越难,情感prompt越管用 3. 对于zero-shot的任务,信息缺失,配合高温度能让情感prompt激发模型的创造力,获得更有想象力的答案,但相应地幻觉风险也更大 4. 对于few-shot的任务,信息少,配合低温度能让情感prompt使得模型聚焦在少量的例子中思考,但也会损失模型的创造力 以下为11个prompt: EP01: Write your answer and give me a confidence score between 0-1 for your answer. EP02: This is very important to my career. EP03: You'd better be sure. EP04: Are you sure? EP05: Are you sure that's your final answer? It might be worth taking another look.

封面图片

见鬼了,谷歌居然开源LLM模型了,Meta要慌了。

见鬼了,谷歌居然开源LLM模型了,Meta要慌了。 Gemma 采用了和Gemini一样技术的开源LLM,同时质量也比同规模的模型要强。 下面是一些要点: ◈ 两种尺寸的模型权重:Gemma 2B和Gemma 7B。每种尺寸都有预训练和指导调整的变体。 ◈ 一个生成式人工智能工具包,为使用Gemma创建更安全的人工智能应用提供指导和必要工具。 ◈ 通过原生Keras 3.0为所有主要框架(JAX、PyTorch和TensorFlow)提供推理和监督微调(SFT)的工具链。 ◈ 准备好的Colab和Kaggle笔记本,以及与Hugging Face、MaxText、NVIDIA NeMo和TensorRT等流行工具的集成,使得开始使用Gemma变得非常容易。 ◈ 预先训练和经过调整的Gemma模型可以在您的笔记本电脑、工作站或Google Cloud上运行,并可以轻松部署到Vertex AI和Google Kubernetes Engine(GKE)。 ◈ 跨多个人工智能硬件平台的优化确保了行业领先的性能,包括NVIDIA GPU和Google Cloud TPU。 ◈ 允许所有组织进行负责任的商业使用和分发,无论规模大小。 ◈未来还会发布Gemma更大模型变体。 了解更多:

封面图片

Learn Prompt-免费开源的 AIGC 课程 #科普知识 #趣站 #ChatGPT #Midjourney https:

封面图片

一款可利用 ChatGPT 总结 arxiv 论文的开源工具。

一款可利用 ChatGPT 总结 arxiv 论文的开源工具。 该项目可根据用户关键词下载 arxiv 上的最新论文,利用 ChatGPT3.5 API 强大的归纳能力,将其浓缩成固定格式,文字少且易读。 作者为 ChatPaper 提供了一个 Web 图形界面,让用户可以选择在私有或公共环境中部设置 ChatPaper,或在 Hugging Face 上在线体验该项目功能。 | #论文 #工具

封面图片

:自然语言处理领域大型语言模型(LLM)的精选资源列表,提供综述、论文和未来研究方向,促进NLP领域内LLM的应用和研究

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人