是一个开源软件包,用于准确解决推理密集型化学任务。

是一个开源软件包,用于准确解决推理密集型化学任务。 它是用 Langchain 构建的,使用了一系列化学工具,包括 RDKit、paper-qa 以及一些化学相关数据库,如 Pubchem 和 chem-space。

相关推荐

封面图片

【Soluna Holdings宣布建立用于比特币挖矿和其他密集型计算应用的绿色数据中心】

【Soluna Holdings宣布建立用于比特币挖矿和其他密集型计算应用的绿色数据中心】 Soluna Holdings首席执行官John Beliziare向股东发表了一封公开信,宣布建立用于比特币挖矿和其他密集型计算应用的绿色数据中心。 John Beliziare称,比特币在加密货币领域的突出地位及其对安全解决方案日益增长的需求使其非常适合我们的有限能源方法,而人工智能的兴起为我们公司提供了进一步增长和多元化的机会。 快讯/广告 联系 @xingkong888885

封面图片

黄仁勋:CPU性能扩展速度下降 处理密集型应用应得到加速

黄仁勋:CPU性能扩展速度下降 处理密集型应用应得到加速 在黄仁勋看来,如果我们需要处理的数据继续呈指数级增长,但处理的性能却没有提升,我们将经历计算膨胀和计算成本的提升。他指出,有一种更好的方法增强计算机的处理性能,那便是通过计算机增强CPU提供加速工作,通过专用处理器做得更好。“现在,随着CPU扩展速度放缓,最终基本停止,我们应该加快让每一个处理密集型应用程序都得到加速,每个数据中心也肯定会得到加速,加速计算是非常明智的,这是很普通的常识。”黄仁勋表示。他指出,计算机图形学是一门完全可以并行操作的学科。计算机图形学、图像处理、物理模拟、组合优化、图形处理、数据库处理,以及深度学习中非常著名的线性代数,许多类型的算法都非常适合通过并行处理来加速。因此,英伟达通过为CPU添加专用的辅助处理器,来实现了对于密集型应用程序的加速。“由于这两个处理器可以并行工作,它们都是自治的,具有更多独立的值,我们可以将100个单位的时间加速到1个单位的时间,速度快得令人难以置信。”黄仁勋表示。 ... PC版: 手机版:

封面图片

是一款开源 Python 软件,用于实现离线强化学习(离线 RL)的端到端流程,从数据收集到离线策略学习、离策略性能评估和策略选

是一款开源 Python 软件,用于实现离线强化学习(离线 RL)的端到端流程,从数据收集到离线策略学习、离策略性能评估和策略选择。软件包括一系列模块,用于实现合成数据集生成、数据集预处理、离策略评估 (OPE) 和离策略选择 (OPS) 方法的估计器。 该软件还与d3rlpy兼容,后者实现了一系列在线和离线 RL 方法。SCOPE-RL 通过OpenAI Gym和类似Gymnasium 的界面,可以在任何环境中进行简单、透明且可靠的离线 RL 研究实验。它还有助于在各种定制数据集和真实数据集的实践中实现离线强化学习。 特别是,SCOPE-RL 能够并促进与以下研究主题相关的评估和算法比较: 离线强化学习:离线强化学习旨在仅从行为策略收集的离线记录数据中学习新策略。SCOPE-RL 使用通过各种行为策略和环境收集的定制数据集来实现灵活的实验。 离线策略评估:OPE 旨在仅使用离线记录的数据来评估反事实策略的性能。SCOPE-RL 支持许多 OPE 估计器,并简化了评估和比较 OPE 估计器的实验程序。此外,我们还实现了先进的 OPE 方法,例如基于状态动作密度估计和累积分布估计的估计器。 离线策略选择:OPS 旨在使用离线记录的数据从多个候选策略池中识别性能最佳的策略。SCOPE-RL 支持一些基本的 OPS 方法,并提供多种指标来评估 OPS 的准确性。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人