:完全重写的Keras代码库,基于模块化后端架构进行重构,可以在任意框架上运行Keras工作流,包括TensorFlow、JAX

:完全重写的Keras代码库,基于模块化后端架构进行重构,可以在任意框架上运行Keras工作流,包括TensorFlow、JAX和PyTorch。 新功能包括:完整的Keras API,适用于TensorFlow、JAX和PyTorch;跨框架的深度学习低级语言;与JAX、PyTorch和TensorFlow原生工作流的无缝集成;支持所有后端的跨框架数据流水线;预训练模型等

相关推荐

封面图片

Google的可视化编程框架,可以在无需编程的图形编辑器中创建机器学习(ML)流水线。可以通过连接拖放的ML组件(包括模型、用户

Google的可视化编程框架,可以在无需编程的图形编辑器中创建机器学习(ML)流水线。可以通过连接拖放的ML组件(包括模型、用户输入、处理器和可视化)快速原型化工作流程。 Visual Blocks提供了节点图编辑器、预置的ML模型和组件库以及输出展示和比较功能,旨在降低ML多媒体应用的开发门槛、加速工作流,并方便用户分享和发布应用 || #框架

封面图片

用于机器人学习和具身AI领域研究的模块化框架

用于机器人学习和具身AI领域研究的模块化框架 RoboHive 生态系统包含一系列预先存在的和新颖的环境,包括 Shadow Hand 的灵巧操纵、Franka 和 Fetch 机器人的全臂操纵任务以及各种四足运动任务。 与之前的作品相比,RoboHive 提供了精简且统一的任务界面,利用最新的模拟绑定,具有丰富的视觉多样性任务,并支持现实世界开发的通用硬件驱动程序。 RoboHive 的统一界面为研究人员提供了一个方便且易于访问的平台来研究多种学习范式,例如模仿、强化、多任务和分层学习。 RoboHive 还包括大多数环境的专家演示和基线结果,为基准测试和比较提供了标准。 特征: 最广泛、多样化的任务集合 完全可定制的视觉丰富的任务,专为行为泛化而设计。 奖励不可知的任务成功指标 支持多种算法系列+预训练基线 Sim 和硬件无关的机器人类,可在 sim <> real 之间轻松转换 远程操作支持。人类+专家数据集 | #框架

封面图片

是一个用于高吞吐量和低延迟实时数据处理的开放框架。它用于创建 Python 代码,无缝结合 LLM 应用程序的批处理、流处理和实

是一个用于高吞吐量和低延迟实时数据处理的开放框架。它用于创建 Python 代码,无缝结合 LLM 应用程序的批处理、流处理和实时 API。每当收到新的输入和请求时,Pathway 的分布式运行时 (-) 都会提供数据管道的最新结果。 Pathway 提供了 Python 中的高级编程接口,用于定义数据转换、聚合和数据流上的其他操作。借助 Pathway,您可以轻松设计和部署复杂的数据工作流程,从而高效地实时处理大量数据。 Pathway 可与各种数据源和接收器(例如 Kafka、CSV 文件、SQL/noSQL 数据库和 REST API)互操作,允许您连接和处理来自不同存储系统的数据。 Pathway 的典型用例包括实时数据处理、ETL(提取、转换、加载)管道、数据分析、监控、异常检测和推荐。Pathway 还可以独立为实时 LLM 应用程序提供轻型 LLMOps 堆栈的骨干。 在 Pathway 中,数据以表格的形式表示。实时数据流也被视为表。该库提供了一组丰富的操作,例如过滤、联接、分组和窗口。

封面图片

:用于构建实时多模态AI应用的框架旨在构建在服务器上运行的实时、可编程参与者。轻松接入 LiveKit WebRTC 会话并处理

:用于构建实时多模态AI应用的框架旨在构建在服务器上运行的实时、可编程参与者。轻松接入 LiveKit WebRTC 会话并处理或生成音频、视频和数据流。 该框架包括用于常见工作流程的插件,例如语音活动检测和语音转文本。 代理与LiveKit 服务器无缝集成,减轻了作业排队和调度的责任。这消除了对额外排队基础设施的需要。当部署到生产中的服务器时,在本地计算机上开发的代理代码可以扩展以支持数千个并发会话。

封面图片

见鬼了,谷歌居然开源LLM模型了,Meta要慌了。

见鬼了,谷歌居然开源LLM模型了,Meta要慌了。 Gemma 采用了和Gemini一样技术的开源LLM,同时质量也比同规模的模型要强。 下面是一些要点: ◈ 两种尺寸的模型权重:Gemma 2B和Gemma 7B。每种尺寸都有预训练和指导调整的变体。 ◈ 一个生成式人工智能工具包,为使用Gemma创建更安全的人工智能应用提供指导和必要工具。 ◈ 通过原生Keras 3.0为所有主要框架(JAX、PyTorch和TensorFlow)提供推理和监督微调(SFT)的工具链。 ◈ 准备好的Colab和Kaggle笔记本,以及与Hugging Face、MaxText、NVIDIA NeMo和TensorRT等流行工具的集成,使得开始使用Gemma变得非常容易。 ◈ 预先训练和经过调整的Gemma模型可以在您的笔记本电脑、工作站或Google Cloud上运行,并可以轻松部署到Vertex AI和Google Kubernetes Engine(GKE)。 ◈ 跨多个人工智能硬件平台的优化确保了行业领先的性能,包括NVIDIA GPU和Google Cloud TPU。 ◈ 允许所有组织进行负责任的商业使用和分发,无论规模大小。 ◈未来还会发布Gemma更大模型变体。 了解更多:

封面图片

Google DeepMind推出Gemma模型

Google DeepMind推出Gemma模型 这是一款轻量级、先进的开源模型,供开发者和研究人员用于AI构建。Gemma模型家族包括Gemma 2B和Gemma 7B两种尺寸,能够在不同的设备类型上运行,包括笔记本电脑、桌面电脑、IoT设备、移动设备和云端。 性能和设计 Gemma模型在技术和基础设施组件上与Gemini共享,这使得Gemma 2B和7B在其大小范围内相比其他开放模型具有最佳性能。 Gemma模型不仅可以直接在开发者的笔记本电脑或桌面电脑上运行,而且在关键基准测试中的表现超过了更大的模型,同时遵循严格的安全和负责任输出标准。 主要特点: 1.轻量级、高性能模型:Gemma模型家族包括Gemma 2B和Gemma 7B两种尺寸,提供预训练和指令调优的变体,针对其大小范围内相比其他开放模型具有最佳性能。 2.跨框架工具链支持:支持JAX、PyTorch和TensorFlow通过原生Keras 3.0进行推理和监督式微调(SFT),适应多种开发需求和环境。 3.易于入门和集成:提供准备就绪的Colab和Kaggle笔记本,以及与Hugging Face、MaxText、NVIDIA NeMo和TensorRT-LLM等流行工具的集成,方便开发者快速上手。 4.高效的运算能力:针对多个AI硬件平台上进行优化,确保在NVIDIA GPU和Google Cloud TPU上的行业领先性能。通过与NVIDIA的合作,无论是在数据中心、云端还是本地RTX AI PC上,都确保了行业领先的性能和与尖端技术的集成。 Gemma模型能够在不同的设备类型上运行,包括笔记本电脑、桌面电脑、IoT设备、移动设备和云端。这种广泛的兼容性使得模型能够适应各种应用场景和需求。 |

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人