基于LLM的系统和产品的构建模式 | 讨论了如何将大型语言模型(LLM)应用于系统和产品中的实用模式,介绍了七种关键模式,包括评

基于LLM的系统和产品的构建模式 | 讨论了如何将大型语言模型(LLM)应用于系统和产品中的实用模式,介绍了七种关键模式,包括评估性能、使用外部知识、微调模型、缓存技术以减少延迟和成本、设置保护措施确保输出质量、设计防御性用户体验来处理错误、收集用户反馈来建立数据循环。 深入讨论了如何使用各种评估指标来衡量模型性能,包括BLEU、ROUGE、BERTScore和MoverScore等;提到了如何使用检索增强生成技术(RAG)将外部信息嵌入到模型中,提高生成质量和可用性。

相关推荐

封面图片

:为大型语言模型(LLM)设计的结构化生成语言,旨在加速和更好地控制与LLM的交互。

:为大型语言模型(LLM)设计的结构化生成语言,旨在加速和更好地控制与LLM的交互。 特点包括:灵活的前端语言,允许轻松编程LLM应用,支持多个连锁生成调用、高级提示技术、控制流、多模式、并行处理和外部交互;具备高性能运行时,使用RadixAttention可以显著加速复杂LLM程序的执行,自动跨多个调用重复使用KV缓存,同时支持连续批处理和张量并行处理。

封面图片

文章介绍了OpenAI开发的ChatGPT大型语言模型聊天机器人,以及如何使用OpenAI Python库构建自己的项目和工具。

文章介绍了OpenAI开发的ChatGPT大型语言模型聊天机器人,以及如何使用OpenAI Python库构建自己的项目和工具。 提供了获取API密钥、设置环境变量、使用Chat Completions API进行文本生成的步骤,提供了创建博客提纲生成器和简单ChatGPT样式聊天机器人的示例代码。 此外还介绍了如何调整温度和top_p参数来增加LLM生成响应的创造性和多样性。

封面图片

:用Rust编写的GPU加速语言模型(LLM)服务器,可高效提供多个本地LLM模型的服务。

:用Rust编写的GPU加速语言模型(LLM)服务器,可高效提供多个本地LLM模型的服务。 主要提供: 为多个本地 LLM 模型提供高性能、高效和可靠的服务 可选择通过 CUDA 或 Metal 进行 GPU 加速 可配置的 LLM 完成任务(提示、召回、停止令牌等) 通过 HTTP SSE 流式传输完成响应,使用 WebSockets 聊天 使用 JSON 模式对完成输出进行有偏差的采样 使用向量数据库(内置文件或 Qdrant 等外部数据库)进行记忆检索 接受 PDF 和 DOCX 文件并自动将其分块存储到内存中 使用静态 API 密钥或 JWT 标记确保 API 安全 简单、单一的二进制+配置文件服务器部署,可水平扩展 附加功能: 用于轻松测试和微调配置的 Web 客户端 用于本地运行模型的单二进制跨平台桌面客户端

封面图片

cohere的大型语言模型(LLM)课程 | 课程从基础开始,涵盖了建立和使用文本表示和文本生成模型的所有内容。

cohere的大型语言模型(LLM)课程 | 课程从基础开始,涵盖了建立和使用文本表示和文本生成模型的所有内容。 理论部分以类比和实例而不是公式进行解释,实践部分包含大量有用的代码示例,帮你巩固知识。 课程内容包括:大型语言模型是如何工作的、LLM有什么用、如何使用LLM构建和部署应用等。

封面图片

基于 Node.js 的工具,可以将 URL 转换为 LLM 可以理解的输入,支持标准、流式和 JSON 模式。使用该工具可以提

基于 Node.js 的工具,可以将 URL 转换为 LLM 可以理解的输入,支持标准、流式和 JSON 模式。使用该工具可以提高 LLM 或 RAG(Retrieval-Augmented Generation)系统的输出质量 | #工具

封面图片

:关于在软件测试中使用大型语言模型 (LLM) 的论文和资源的集合。

:关于在软件测试中使用大型语言模型 (LLM) 的论文和资源的集合。 LLM已成为自然语言处理和人工智能领域的突破性技术。这些模型能够执行各种与编码相关的任务,包括代码生成和代码推荐。因此,在软件测试中使用LLM预计会产生显着的改进。一方面,软件测试涉及诸如单元测试生成之类的任务,这些任务需要代码理解和生成。另一方面,LLM可以生成多样化的测试输入,以确保全面覆盖正在测试的软件。 此存储库对LLM在软件测试中的运用进行了全面回顾,收集了 102 篇相关论文,并从软件测试和法学硕士的角度进行了全面的分析。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人