:用于在最先进的计算机视觉模型上运行推理的工具,可以在没有机器学习或特定于设备部署的先验知识的情况下,将计算机视觉模型部署到设备

None

相关推荐

封面图片

Jax计算机视觉库 | #计算机视觉

封面图片

Meta最新的开源项目DINOv2:具有自我监督学习功能的最先进的计算机视觉模型

Meta最新的开源项目DINOv2:具有自我监督学习功能的最先进的计算机视觉模型 这款全新的自监督视觉Transformer模型可以作为几乎所有计算机视觉任务的主干模型。无需微调。 • 无需大量标注数据,即可训练计算机视觉模型。 • 多功能主干:图像分类、分割、图像检索和深度估计。 • 直接从图像中学习特征,而无需依赖文本描述,这有助于更好地理解局部信息。 • 可以从任何图像集合中学习。 • DINOv2 的预训练版本已经上线,并在众多任务中与 CLIP 和 OpenCLIP 竞争。 Meta继SAM(Segment Anything) 网页链接 之后又一计算机视觉领域的重量级开源项目。 |||

封面图片

康奈尔大学《计算机视觉导论》课程 | #计算机视觉

封面图片

高级计算机视觉主题资源大列表 | #计算机视觉

封面图片

Meta 开源计算机视觉基础模型 DINOv2

Meta 开源计算机视觉基础模型 DINOv2 Meta 开源了它的计算机视觉基础模型 DINOv2,源代码托管在上,和 Meta 近期开源的其它 AI 模型一样,采用的是非商用的 CC-BY-NC 4.0 许可证。DINOv2 是基于 Vision Transformer (ViT)架构,使用一个包含 1.42 亿幅图像的精选数据集进行预训练,可用于图像分类、视频动作识别、语义分割和深度估计等任务。Meta 称 DINOv2 模型的速度是旧方法的两倍,使用的内存只有旧方法的三分之一。测试显示它相比其它同类模型有显著改进。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

面向计算机视觉的Transformer:架构、技巧与提升 | #计算机视觉

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人