,一个可以让多人协作运行 Llama 和 BLOOM 等大型语言模型的项目

,一个可以让多人协作运行 Llama 和 BLOOM 等大型语言模型的项目 使用Llama 2 (70B),Falcon (180B),BLOOM (176B)(或其衍生版本)生成文本,并针对任务进行微调,可使用消费级GPU或Google Colab。 你可以加载模型的一小部分,然后加入一个网络,由其他人提供其余部分。Llama 2 (70B)的单批量推理速度可达6个标记/秒,Falcon(180B)的单批量推理速度可达4个标记/秒,足以用于聊天机器人和交互应用程序。

相关推荐

封面图片

4050亿参数 Meta或将7月23日发布迄今最强大Llama 3模型

4050亿参数 Meta或将7月23日发布迄今最强大Llama 3模型 Meta公司拒绝对上述消息置评。周五盘中,低开的Meta股价跌幅收窄,盘初曾跌3.6%,午盘跌不足2%,仍将在周四大幅回落超4%后连跌两日,或将刷新6月28日以来收盘低位。去年7月Meta发布的Llama 2有三个版本,最大版本70B的参数规模为700亿。今年4月,Meta发布Llama 3Meta,称它为“迄今为止能力最强的开源LLM”。当时推出的Llama 3有8B和70B两个版本。Meta CEO扎克伯格当时称,大版本的Llama 3将有超过4000亿参数。Meta并未透露会不会将4000亿参数规模的Llama 3开源,当时它还在接受训练。对比前代,Llama 3有了质的飞跃。Llama 2使用2万亿个 token进行训练,而训练Llama 3大版本的token超过15 万亿。Meta称,由于预训练和训练后的改进,其预训练和指令调优的模型是目前8B和70B两个参数规模的最佳模型。在训练后程序得到改进后,模型的错误拒绝率(FRR)大幅下降,一致性提高,模型响应的多样性增加。 在推理、代码生成和指令跟踪等功能方面,Llama 3相比Llama 2有极大改进,使Llama 3更易于操控。4月Meta展示,8B和70B版本的Llama 3指令调优模型在大规模多任务语言理解数据集(MMLU)、研究生水平专家推理(GPQA)、数学评测集(GSM8K)、编程多语言测试(HumanEval)等方面的测评得分都高于Mistral、谷歌的Gemma和Gemini和Anthropic的Claude 3。8B和70B版本的预训练Llama 3多种性能测评优于Mistral、Gemma、Gemini和Mixtral。当时社交媒体的网友评论称,根据基准测试,当前的Llama 3模型不完全是 GPT-4 级别的,但仍在训练中的较大尺寸的模型将达到 GPT-4 级别。英伟达高级科学家Jim Fan认为,Llama 3的推出已经脱离了技术层面的进步,更是开源模型与顶尖闭源模型可分庭抗礼的象征。从Jim Fan分享的基准测试可以看出,Llama 3 400B 的实力几乎媲美 Claude“超大杯”以及新版 GPT-4 Turbo,将成为“分水岭”,相信它将释放巨大的研究潜力,推动整个生态系统的发展,开源社区或将能用上GPT-4级别的模型。此后有消息称,研究人员尚未开始对Llama 3进行微调,还未决定Llama 3是否将是多模态模型;正式版的Llama 3将会在今年7月正式推出。不同于OpenAI等开发商,Meta致力于开源LLM,不过,这个赛道也越来越拥挤。谷歌、特斯拉CEO马斯克旗下的xAI和Mistral 等竞争对手也发布了免费的AI模型。Llama 3问世后,同在4月亮相的4800亿参数模型Arctic击败Llama 3、Mixtra,刷新了全球最大开源模型的纪录。Arctic基于全新的Dense-MoE架构设计,由一个10B的稠密Tranformer模型和128×3.66B的MoE MLP组成,并在3.5万亿个token上进行了训练。相比Llama 3 8B和Llama 2 70B,Arctic所用的训练计算资源不到它们的一半,评估指标却取得了相当的分数。 ... PC版: 手机版:

封面图片

Poe 在 X 宣布,Llama 3 已可在 Poe 上使用。Llama 3 70B 是目前最强大的开源模型,在整个行业基准中具

Poe 在 X 宣布,Llama 3 已可在 Poe 上使用。Llama 3 70B 是目前最强大的开源模型,在整个行业基准中具有最先进的性能。它提供了新的功能,例如增强的推理、更好的代码生成和改进的指令跟踪。 标签: #Poe #AI 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

Meta发布全新大型语言模型LLaMA,加入硅谷AI竞赛

Meta发布全新大型语言模型LLaMA,加入硅谷AI竞赛 当地时间2月24日,Meta公司发布一款新的人工智能大型语言模型LLaMA,加入微软、谷歌等硅谷公司的竞赛。Meta首席执行官扎克伯格在Instagram表示,LLaMA模型旨在帮助研究人员推进工作,在生成文本、对话、总结书面材料、证明数学定理或预测蛋白质结构等更复杂的任务方面“有很大的前景”。Meta表示,在大多数基准测试中,参数仅为十分之一的LLaMA-13B的性能优于OpenAI推出的GPT3(175B),也即支持ChatGPT的GPT3.5的前身。 来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

Meta宣布推出Llama 2(羊驼2) 提供7B~70B模型 开源免费可商用

Meta宣布推出Llama 2(羊驼2) 提供7B~70B模型 开源免费可商用 今天 Meta 发布 Llama 2 也就是羊驼 2 模型,提供 7B、13B 和 70B 参数版本,该模型开源、免费、可商用,这也是为什么最近一段时间有大量新模型出现,对开源社区来说,只要有高质量模型被开源出来,那接下来就是社区成员登场,微调、优化、定制、整合,然后就可以生成更多模型了。 羊驼 2 预训练模型接受了 2 万亿个 tokens 的训练,上下文长度是 Llama 1 的两倍,是的其上下文长度从 2048 提升到了 4096,其微调模型接受了超过 100 万个人类标注的训练。 根据 Meta AI 研究团队的测试,羊驼 2 在不少测试中表现都比较优异 (相对其他开源模型),包括推理、编程、熟练程度和知识测试。 (需要提供Email地址) 来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

Meta发布Llama 3 称其是目前最好的开放式模型之一

Meta发布Llama 3 称其是目前最好的开放式模型之一 Meta 称,与上一代 Llama 模型 Llama 2 8B 和 Llama 2 70B 相比,新模型 Llama 3 8B(包含 80 亿个参数)和 Llama 3 70B(包含 700 亿个参数)在性能上有了"重大飞跃"。(参数从本质上定义了人工智能模型处理问题的能力,比如分析和生成文本;一般来说,参数数越高的模型比参数数越低的模型能力越强)。事实上,Meta 表示,就各自的参数数而言,Llama 3 8B 和 Llama 3 70B 是在两个定制的 24,000 GPU 集群上训练出来的,是当今性能最好的生成式人工智能模型之一。话说得很满,那么,Meta 公司是如何证明这一点的呢?该公司指出了 Llama 3 模型在 MMLU(用于测量知识)、ARC(用于测量技能习得)和 DROP(用于测试模型对文本块的推理能力)等流行的人工智能基准上的得分。正如我们之前所写,这些基准的实用性和有效性还有待商榷。但无论好坏,它们仍然是 Meta 等人工智能玩家评估其模型的少数标准化方法之一。在至少九项基准测试中,Llama 3 8B 优于其他开源模型,如 Mistral 的Mistral 7B和 Google 的Gemma 7B,这两个模型都包含 70 亿个参数:这些基准包括:MMLU、ARC、DROP、GPQA(一组生物、物理和化学相关问题)、HumanEval(代码生成测试)、GSM-8K(数学单词问题)、MATH(另一种数学基准)、AGIEval(解决问题测试集)和 BIG-Bench Hard(常识推理评估)。现在,Mistral 7B 和 Gemma 7B 并不完全处于最前沿(Mistral 7B 于去年 9 月发布),在 Meta 引用的一些基准测试中,Llama 3 8B 的得分仅比这两款产品高几个百分点。但 Meta 还声称,参数数更多的 Llama 3 型号 Llama 3 70B 与旗舰生成式人工智能模型(包括Google Gemini 系列的最新产品 Gemini 1.5 Pro)相比也具有竞争力。图片来源:MetaLlama 3 70B 在 MMLU、HumanEval 和 GSM-8K 三项基准测试中均优于 Gemini 1.5 Pro,而且,虽然它无法与 Anthropic 性能最强的 Claude 3 Opus 相媲美,但 Llama 3 70B 在五项基准测试(MMLU、GPQA、HumanEval、GSM-8K 和 MATH)中的得分均优于 Claude 3 系列中性能最弱的 Claude 3 Sonnet。值得注意的是,Meta 还开发了自己的测试集,涵盖了从编码、创作到推理、总结等各种用例,令人惊喜的是,Llama 3 70B 在与 Mistral Medium 模型、OpenAI 的 GPT-3.5 和 Claude Sonnet 的竞争中脱颖而出!- Llama 3 70B 在与 Mistral 的 Mistral Medium 模型、OpenAI 的 GPT-3.5 和 Claude Sonnet 的竞争中脱颖而出。Meta 表示,为了保持客观性,它禁止其建模团队访问这组数据,但很明显,鉴于 Meta 自己设计了这项测试,我们必须对结果持谨慎态度。在质量方面,Meta 表示,新 Llama 模型的用户可以期待更高的"可操控性"、更低的拒绝回答问题的可能性,以及更高的琐碎问题、与历史和 STEM 领域(如工程和科学)相关的问题和一般编码建议的准确性。这在一定程度上要归功于一个更大的数据集:一个由 15 万亿个标记组成的集合,或者说一个令人难以置信的 750,000,000,000 单词,是 Llama 2 训练集的七倍。这些数据从何而来?Meta 公司不愿透露,只表示数据来自"公开来源",包含的代码数量是 Llama 2 训练数据集的四倍,其中 5%包含非英语数据(约 30 种语言),以提高非英语语言的性能。Meta 还表示,它使用了合成数据(即人工智能生成的数据)来创建较长的文档,供 Llama 3 模型训练使用,由于这种方法存在潜在的性能缺陷,因此颇受争议。Meta 在一篇博文中写道:"虽然我们今天发布的模型仅针对英语输出进行了微调,但数据多样性的增加有助于模型更好地识别细微差别和模式,并在各种任务中表现出色。"许多生成式人工智能供应商将训练数据视为一种竞争优势,因此对训练数据和相关信息守口如瓶。但是,训练数据的细节也是知识产权相关诉讼的潜在来源,这是另一个不愿意透露太多信息的原因。最近的报道显示,Meta 公司为了追赶人工智能竞争对手的步伐,曾一度不顾公司律师的警告,将受版权保护的电子书用于人工智能训练;包括喜剧演员莎拉-西尔弗曼(Sarah Silverman)在内的作者正在对 Meta 和 OpenAI 提起诉讼,指控这两家公司未经授权使用受版权保护的数据进行训练。那么,生成式人工智能模型(包括 Llama 2)的另外两个常见问题毒性和偏差又是怎么回事呢?Llama 3 是否在这些方面有所改进?Meta 声称:是的。Meta 表示,公司开发了新的数据过滤管道,以提高模型训练数据的质量,并更新了一对生成式人工智能安全套件 Llama Guard 和 CybersecEval,以防止 Llama 3 模型和其他模型的滥用和不必要的文本生成。该公司还发布了一款新工具 Code Shield,旨在检测生成式人工智能模型中可能引入安全漏洞的代码。不过,过滤并非万无一失,Llama Guard、CybersecEval 和 Code Shield 等工具也只能做到这一步。我们需要进一步观察 Llama 3 型号在实际运用时的表现如何,包括学术界对其他基准的测试。Meta公司表示,Llama 3模型现在已经可以下载,并在Facebook、Instagram、WhatsApp、Messenger和网络上为Meta公司的Meta人工智能助手提供支持,不久将以托管形式在各种云平台上托管,包括AWS、Databricks、Google Cloud、Hugging Face、Kaggle、IBM的WatsonX、Microsoft Azure、NVIDIA的NIM和Snowflake。未来,还将提供针对 AMD、AWS、戴尔、英特尔、NVIDIA 和高通硬件优化的模型版本。而且,功能更强大的型号即将问世。Meta 表示,它目前正在训练的 Llama 3 模型参数超过 4000 亿个这些模型能够"用多种语言交流"、接收更多数据、理解图像和其他模式以及文本,这将使 Llama 3 系列与 Hugging Face 的Idefics2 等公开发布的版本保持一致。"我们近期的目标是让 Llama 3 成为多语言、多模态、具有更长上下文的产品,并继续提高推理和编码等核心(大型语言模型)功能的整体性能,"Meta 在一篇博文中写道。"还有很多事情要做"。 ... PC版: 手机版:

封面图片

Perplexity推出,可快速访问开源大型语言模型如Mistral 7B、Llama2 13B等

Perplexity推出,可快速访问开源大型语言模型如Mistral 7B、Llama2 13B等 - pplx-api易于使用,开发者可以在几分钟内通过REST API整合先进的开源模型。 - pplx-api推理速度很快,比其他解决方案的延迟降低了2-3倍。 - pplx-api基础设施经过验证,可以承载产品级流量。 - pplx-api采用NVIDIA TensorRT-LLM和AWS A100 GPU等先进软硬件,实现了优化。 - pplx-api已用于Perplexity的产品中,相比外部API每年节省了62万美元成本。 - pplx-api兼容OpenAI API,可以轻松集成到现有应用中。 - 未来pplx-api将支持更多定制和开源模型。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人