是一个基于Python和JAX的库,用于实现贝叶斯计算中常用的采样和变分推断算法。

是一个基于Python和JAX的库,用于实现贝叶斯计算中常用的采样和变分推断算法。 该库通过函数式编程方法提高了易用性、速度和模块化,使得统计‘原子’能够灵活组合以执行精确的贝叶斯推断。其核心特色在于支持构建复杂采样方法和推断模型,尤其适合需要尖端方法的用户、研究人员和有志于深入理解这些方法的人。 BlackJAX的设计原则强调了纯函数式结构以简化并行化,并提供了低级API,使用户能够实现定制的复杂方法。BlackJAX鼓励重新引入结构感知算法,以适应现代模型推断的需求。

相关推荐

封面图片

机器学习算法的数学解析与Python实现

机器学习算法的数学解析与Python实现 描述:本书以机器学习的算法为主线,深入剖析算法的概念和数学原理,以通俗形象的语言进行讲解,让读者无须了解太多前置数学知识,就能看懂数学公式所表达的意思,从而快速掌握机器学习的思想和原理。本书首先介绍机器学习基本概念及工具,然后从概念、原理、Python实现、应用场景几个方面,详细剖析机器学习中主要的算法,如线性回归算法、Logistic回归算法、KNN算法、朴素贝叶斯算法、决策树算法、支持向量机算法、K-means聚类算法、神经网络、集成学习方法等。 链接: 大小:10 MB 标签:#机器学习 #算法 #数学原理 #通俗讲解 #前置知识 #基本概念 #工具 #线性回归 来自:雷锋 频道:@Aliyundrive_Share_Channel 群组:@alyd_g 投稿:@AliYunPanBot

封面图片

资源机器学习算法的数学解析与Python实现

资源机器学习算法的数学解析与Python实现 资源简介:本书以机器学习的算法为主线,深入剖析算法的概念和数学原理,以通俗形象的语言进行讲解,让读者无须了解太多前置数学知识,就能看懂数学公式所表达的意思,从而快速掌握机器学习的思想和原理。本书首先介绍机器学习基本概念及工具,然后从概念、原理、Python实现、应用场景几个方面,详细剖析机器学习中主要的算法,如线性回归算法、Logistic回归算法、KNN算法、朴素贝叶斯算法、决策树算法、支持向量机算法、K-means聚类算法、神经网络、集成学习方法等。 链接:【阿里云盘】点击获取 关键词:#机器学习 #算法 #数学原理 #通俗讲解 #前置知识 #基本概念 #工具 #线性回归 #Logistic 回归 #KNN 算法 #朴素贝叶斯 #决策树 #支持向量机 #K-means 聚类 #神经网络 #集成学习 合作 • 云盘投稿 • 云盘搜索

封面图片

SSLRec是一个基于 PyTorch 的深度学习框架,用于通过自我监督学习技术增强的推荐系统。包含常用的数据集、用于数据处理、

SSLRec是一个基于 PyTorch 的深度学习框架,用于通过自我监督学习技术增强的推荐系统。包含常用的数据集、用于数据处理、训练、测试、评估和最先进的研究模型的代码脚本。 SSLRec提供了大量实用函数和易于使用的界面,简化了推荐模型的开发和评估。 突出特点 灵活的模块化架构。SSLRec 库采用模块化架构,可以轻松定制和组合模块。这使用户能够创建适合其特定需求和要求的个性化推荐模型。 多样化的推荐场景。SSLRec 库是一个多功能工具,适合有兴趣在不同推荐系统研究领域构建有效推荐模型的研究人员和从业者。 综合最先进的模型。我们的 SSLRec 框架为各种场景提供了广泛的 SSL 增强推荐模型。研究人员可以使用先进技术评估这些模型,并将其作为推动推荐系统领域创新的基础。 统一数据馈送和标准评估协议。SSLRec框架具有统一的数据馈送器和标准评估协议,可以轻松加载和预处理来自各种来源和格式的数据,同时确保对推荐模型的客观和公平评估。 丰富的实用功能。SSLRec 库提供了大量实用函数,可以简化推荐模型的开发和评估。这些功能结合了推荐系统的常见功能以及图操作、网络架构和损失函数的自监督学习。 易于使用的界面。我们提供了一个用户友好的界面,可以简化推荐模型的训练和评估。这使得研究人员和从业者能够轻松高效地试验各种模型和配置。 | #框架

封面图片

YOLOv8算法原理与实现 | Ultralytics YOLOv8是Ultralytics开发的YOLO目标检测和图像分割模型

YOLOv8算法原理与实现 | Ultralytics YOLOv8是Ultralytics开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新功能和改进以进一步提高性能和灵活性。其中包括一个新的主干网络、一个新的无锚检测头和一个新的损失函数。YOLOv8 也非常高效,可以在从 CPU 到 GPU 的各种硬件平台上运行。 不过,ultralytics 并没有将开源库命名为 YOLOv8,而是直接使用了 ultralytics 这个词,因为 ultralytics 将该库定位为一个算法框架,而不是一个特定的算法,主要侧重于可扩展性。预计该库不仅可以用于 YOLO 模型族,还可以用于非 YOLO 模型和分类分割姿态估计等各种任务。 YOLOv8的核心特征 1.提出了一种新的最先进的 (SOTA) 模型,具有 P5 640 和 P6 1280 分辨率的对象检测模型,以及基于 YOLACT 的实例分割模型。该模型还包括与 YOLOv5 类似的具有 N/S/M/L/X 尺度的不同尺寸选项,以迎合各种场景。 2.主干网络和颈部模块基于YOLOv7 ELAN设计理念,将YOLOv5的C3模块替换为C2f模块。但是,这个C2f模块中有很多操作,比如Split和Concat,不像以前那样对部署友好。 3.Head模块更新为目前主流的解耦结构,将分类头和检测头分离,从Anchor-Based切换到Anchor-Free。 4.loss计算采用TOOD中的TaskAlignedAssigner,在regression loss中引入Distribution Focal Loss。 5.在data augmentation部分,Mosaic在最后10个training epoch中关闭,与YOLOX训练部分相同。 从上面的总结可以看出,YOLOv8主要是指最近提出的YOLOX、YOLOv6、YOLOv7和PPYOLOE等算法的设计。 总的来说,YOLOv8 是一个强大而灵活的对象检测和图像分割工具,它提供了两全其美的优势:SOTA 技术以及使用和比较所有以前的 YOLO 版本的能力。

封面图片

:基于PyTorch构建的高性能优化器库,可轻松实现函数优化和基于梯度的元学习

:基于PyTorch构建的高性能优化器库,可轻松实现函数优化和基于梯度的元学习 它包括两个主要功能: TorchOpt 提供了功能优化器,可以为 PyTorch 启用类似 JAX 的可组合功能优化器。使用 TorchOpt,可以轻松地在 PyTorch 中使用函数式优化器进行神经网络优化,类似于 JAX 中的Optax。 借助函数式编程的设计,TorchOpt 为基于梯度的元学习研究提供了高效、灵活且易于实现的可微优化器。它在很大程度上减少了实现复杂的元学习算法所需的工作量。

封面图片

:一个用于 Javascript 的现代 GPU 计算框架。它将 Jascript 函数转换为 WebGPU 计算着色器以实现大

:一个用于 Javascript 的现代 GPU 计算框架。它将 Javascript 函数转换为 WebGPU 计算着色器以实现大规模并行化。它是 Python 库Taichi的 Javascript 版本

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人