:轻量、独立的 C++ 推理引擎,用于 Google Gemma 基础模型

None

相关推荐

封面图片

Google DeepMind推出Gemma模型

Google DeepMind推出Gemma模型 这是一款轻量级、先进的开源模型,供开发者和研究人员用于AI构建。Gemma模型家族包括Gemma 2B和Gemma 7B两种尺寸,能够在不同的设备类型上运行,包括笔记本电脑、桌面电脑、IoT设备、移动设备和云端。 性能和设计 Gemma模型在技术和基础设施组件上与Gemini共享,这使得Gemma 2B和7B在其大小范围内相比其他开放模型具有最佳性能。 Gemma模型不仅可以直接在开发者的笔记本电脑或桌面电脑上运行,而且在关键基准测试中的表现超过了更大的模型,同时遵循严格的安全和负责任输出标准。 主要特点: 1.轻量级、高性能模型:Gemma模型家族包括Gemma 2B和Gemma 7B两种尺寸,提供预训练和指令调优的变体,针对其大小范围内相比其他开放模型具有最佳性能。 2.跨框架工具链支持:支持JAX、PyTorch和TensorFlow通过原生Keras 3.0进行推理和监督式微调(SFT),适应多种开发需求和环境。 3.易于入门和集成:提供准备就绪的Colab和Kaggle笔记本,以及与Hugging Face、MaxText、NVIDIA NeMo和TensorRT-LLM等流行工具的集成,方便开发者快速上手。 4.高效的运算能力:针对多个AI硬件平台上进行优化,确保在NVIDIA GPU和Google Cloud TPU上的行业领先性能。通过与NVIDIA的合作,无论是在数据中心、云端还是本地RTX AI PC上,都确保了行业领先的性能和与尖端技术的集成。 Gemma模型能够在不同的设备类型上运行,包括笔记本电脑、桌面电脑、IoT设备、移动设备和云端。这种广泛的兼容性使得模型能够适应各种应用场景和需求。 |

封面图片

Google 发布开源大语言模型 Gemma

Google 发布开源大语言模型 Gemma 谷歌今天宣布推出 Gemma,这是一个新的轻量级开源大语言模型系列。 现在 Gemma 2B 和 Gemma 7B 两个模型已经可用,每个尺寸都发布了经过预训练和指令调整的变体。谷歌同时提供了多项工具以便快速部署该模型,包括开箱即用的 Colab 实例,可快速部署的容器镜像,以及和其它流行开发工具的集成。 Gemma 模型也能够直接在开发人员笔记本电脑或台式计算机上运行。根据谷歌的,该模型在多个测试中超越的 Llama 2 等开源模型。这些新模型“受到 Gemini 的启发”,使用与其相似的技术,并被许可用于商业和研究用途。 此外,谷歌还发布了一个新的负责任的生成式AI工具包,以提供“使用 Gemma 创建更安全的人工智能应用程序的指导和基本工具”以及调试工具。 , ,

封面图片

Google 推出开源大模型更新 Gemma 2

Google 推出开源大模型更新 Gemma 2 Google 今天发布了其下一代开源大模型 Gemma 2,有 9B 和 27B 两种参数大小。与第一代相比,其性能更高、推理效率更高,并且内置了显著的安全改进。 Google称, 27B 的模型性能可以与比其大两倍的模型相媲美。这些大模型可在单个 NVIDIA H100 GPU 或 TPU 主机实现全精度推理,从而显著降低部署成本。 Gemma 2 也可以在 CPU 上使用量化版本进行本地推理,或者在配备 NVIDIA RTX 或 GeForce RTX 的个人电脑上使用。

封面图片

高性能C++基础库,支持C++高性能服务端开发,提供大量基础组件,广泛应用于对性能有严苛要求的场景,如搜索推荐引擎、自动驾驶车载

封面图片

:基于TileDB存储引擎开发的用于向量搜索的C++库和Python API

封面图片

这是一款轻量级、先进的开源模型,供开发者和研究人员用于 AI 构建。Gemma 模型家族包括 Gemma 2B 和 Gemma

这是一款轻量级、先进的开源模型,供开发者和研究人员用于 AI 构建。Gemma 模型家族包括 Gemma 2B 和 Gemma 7B 两种尺寸, 能够在不同的设备类型上运行,包括笔记本电脑、桌面电脑、IoT 设备、移动设备和云端。性能和设计 Gemma 模型在技术和基础设施组件上与 Gemini 共享,这使得 Gemma 2B 和 7B 在其大小范围内相比其他开放模型具有最佳性能。 Gemma 模型不仅可以直接在开发者的笔记本电脑或桌面电脑上运行,而且在关键基准测试中的表现超过了更大的模型,同时遵循严格的安全和负责任输出标准。 主要特点: 1、轻量级、高性能模型:Gemma 模型家族包括 Gemma 2B 和 Gemma 7B.两种尺寸,提供预训练和指令调优的变体,针对其大小范围内相比其他开放模型具有最佳性能。 2、跨框架工具链支持:支持 JAX、PyTorch 和 TensorFlow 通过原生 Keras 3.0.进行推理和监督式微调(SFT),适应多种开发需求和环境。 3、易于入门和集成:提供准备就绪的 Colab 和 Kaggle 笔记本,以及与 Hugging Face、MaxText、NVIDIA NeMo.和 TensorRT-LLM 等流行工具的集成,方便开发者快速上手。 4.高效的运算能力:针对多个 AI 硬件平台上进行优化,确保在 NVIDIA GPU 和 Google Cloud TPU 上的行业领先性能。通过与 NVIDIA 的合作,无论是在数据中心、云端还是本地 RTX AI PC 上,都确保了行业领先的性能和与尖端技术的集成。 Gemma 模型能够在不同的设备类型上运行,这种广泛的兼容性使得模型能够适应各种应用场景和需求。 Hugging Face 测试链接: via 匿名 标签: #Google #Gemma 频道: @GodlyNews1 投稿: @GodlyNewsBot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人