:多语言、高性能、可定制:350亿参数的开源语言模型

:多语言、高性能、可定制:350亿参数的开源语言模型 - C4AI Command-R是一个350亿参数的高性能生成式模型,由Cohere和Cohere For AI联合开发。 - Command-R是一个大型语言模型,其开放权重针对多种用例进行了优化,包括推理、摘要和问答。 - Command-R具有多语言生成能力,在10种语言上进行了评估,并具有高性能的RAG(Retrieval-Augmented Generation)能力。 - 该模型的许可证为CC-BY-NC,使用时还需遵守C4AI的可接受使用政策。 - Command-R的上下文长度为128K,可以使用Hugging Face的Transformers库进行调用和使用。 - C4AI Command-R的发布展示了Cohere在开发大型语言模型方面的实力。350亿参数的模型规模处于业界领先水平,有望在多个应用领域取得突破。 - Command-R的开放权重和对多种用例的优化,为开发者和研究者提供了灵活性和可定制性。这有助于促进模型的应用和创新。 - 多语言生成能力和高性能RAG能力的结合,使Command-R在跨语言任务和知识密集型任务上具有独特优势。这可能推动自然语言处理技术在全球范围内的普及和应用。 - CC-BY-NC许可证和C4AI的可接受使用政策体现了Cohere对于负责任AI开发的重视。在开放模型的同时,设置合理的使用边界,有助于防范潜在的滥用风险。 - 基于Hugging Face生态系统发布模型,降低了用户的使用门槛。这种与主流开源社区的融合,有利于Command-R的推广和迭代。 - 尽管Command-R的开放权重提供了灵活性,但对于缺乏计算资源的中小型开发者而言,350亿参数的模型规模可能难以承受。这可能加剧AI开发的门槛和不平等。 - Command-R在多语言任务上的出色表现,可能促使更多开发者将其应用于跨文化交流和全球化业务。但过度依赖单一模型,可能忽视了不同语言和文化的独特性。 - 开放模型虽然有利于创新,但也可能加剧恶意使用和滥用的风险。即使有使用政策的约束,在实践中难以对每一个应用进行有效监管。这需要技术和制度的双重发力。

相关推荐

封面图片

128k上下文+多语言+工具:Cohere开放企业级应用大模型

128k上下文+多语言+工具:Cohere开放企业级应用大模型 Cohere推出Command R+模型,一个为应对企业级工作负载而构建的最强大、最具可扩展性的大型语言模型(LLM)。 - Command R+首先在Microsoft Azure上推出,旨在加速企业AI的采用。它加入了Cohere的R系列LLM,专注于在高效率和强准确性之间取得平衡,使企业能从概念验证走向生产。 - Command R+具有128k token的上下文窗口,旨在提供同类最佳的性能,包括: - 先进的检索增强生成(RAG)和引用,以减少幻觉 - 支持10种关键语言的多语言覆盖,以支持全球业务运营 - 工具使用,以实现复杂业务流程的自动化 - Command R+在各方面都优于Command R,在类似模型的基准测试中表现出色。 - 开发人员和企业可以从今天开始在Azure上访问Cohere的最新模型,很快也将在Oracle云基础设施(OCI)以及未来几周内的其他云平台上提供。Command R+也将立即在Cohere的托管API上提供。 - Atomicwork等企业客户可以利用Command R+来改善数字工作场所体验,加速企业生产力。 思考: - Cohere推出Command R+,进一步丰富了其企业级LLM产品线,展现了其在企业AI市场的雄心和实力。与微软Azure的合作有望加速其企业客户的拓展。 - Command R+在Command R的基础上进行了全面升级,128k token的上下文窗口、多语言支持、工具使用等特性使其能够胜任更加复杂多样的企业应用场景。这表明Cohere对企业需求有着深刻洞察。 - RAG和引用功能有助于提高模型输出的可靠性,减少幻觉,这对于企业级应用至关重要。可以看出Cohere在兼顾性能的同时,也非常重视模型的可控性。 - 与微软、甲骨文等云计算巨头合作,使Command R+能够在多个主流云平台上快速部署,降低了企业的采用门槛。这种开放的生态策略有利于加速其市场渗透。 - Atomicwork等企业客户的支持表明Command R+具有显著的商业价值。将LLM与企业数字化转型相结合,有望催生更多创新性的应用。 - Command R+的推出标志着Cohere在企业级AI市场的发力,其强大的性能和完善的生态有望帮助其在竞争中占据优势地位。不过,企业AI的落地仍面临数据安全、伦理合规等诸多挑战,Cohere还需要在这些方面持续投入。

封面图片

CodeGeeX:这是一个具有 130 亿参数的大规模多语言代码生成模型,开源版的copilot,CodeGeeX是一个具有13

CodeGeeX:这是一个具有 130 亿参数的大规模多语言代码生成模型,开源版的copilot,CodeGeeX是一个具有130亿参数的多编程语言代码生成预训练模型。支持生成Python、C++、Java、JavaScript和Go等多种主流编程语言的代码 ​​​ ||

封面图片

开源DBRX高性能大语言模型

开源DBRX高性能大语言模型 DBRX是Databricks开发的开源通用语言模型,在多项标准基准测试上达到了当前开源语言模型的最高水平。DBRX在多项综合基准测试中表现最好,尤其在编程和数学推理方面优于其他开源模型。与开源模型相比,DBRX在MMLU数据集上的表现也是最好的。 根据测试,DBRX甚至超过了专门用于编程的CodeLLAMA-70B,并且与商业模型GPT-3.5相当甚至略胜。DBRX也与Gemini 1.0 Pro和Mistral Medium等商业模型有竞争力。 DBRX使用混合专家(MoE)架构,使其在训练和推理上更加高效。与类似参数量的非MoE模型相比,DBRX的推理吞吐量提高2-3倍。DBRX的整体训练效率比之前提高了近4倍,这得益于更好的数据、MoE架构以及其他改进。 DBRX已经在Databricks的GenAI产品中进行了集成,客户可以通过API使用该模型。DBRX的训练代码和模型也在Hugging Face平台上开源。DBRX证明了Databricks可以高效地训练世界级的基础语言模型,也为企业训练自己的基础模型提供了能力。DBRX只是Databricks协助客户训练定制语言模型的一个例子。

封面图片

Google最新发布PaLM 2,一种新的语言模型,具有更好的多语言和推理能力,同时比其前身PaLM更节省计算资源。

Google最新发布PaLM 2,一种新的语言模型,具有更好的多语言和推理能力,同时比其前身PaLM更节省计算资源。 PaLM 2综合了多项研究进展,包括计算最优的模型和数据规模、更多样化和多语言的数据集、以及更有效的模型架构和目标函数。 PaLM 2在多种任务和能力上达到了最先进的性能,包括语言水平考试、分类和问答、推理、编程、翻译和自然语言生成等。PaLM 2还展示了强大的多语言能力,能够处理数百种语言,并在不同语言之间进行翻译和解释。PaLM 2还考虑了负责任的使用问题,包括推理时控制毒性、减少记忆化、评估潜在的伤害和偏见等。

封面图片

编号:1746需求商品:长期寻找国外多语言项目,有新鲜多语言的联系本人,旗下业务实力超强

编号:1746 需求商品:长期寻找国外多语言项目,有新鲜多语言项目的联系本人,旗下业务实力超强 详情介绍:长期寻找国外多语言项目,有新鲜多语言项目的联系本人,旗下业务实力超强有新鲜多语言项目平台包含:金融类商城开店FX6外汇多语言直播软件等等有这种类型的联系我 需求资源链接:https://www.huidu.io/business/9531/ 注册灰度官网账号,即可免费发布供需广告2次 灰度官网: www.huidu.io 灰度对所发布资源不做担保,沟通合作请注意防骗 若有任何问题,请联系@huiduTom

封面图片

Bing Image Creator 开始支持多语言

Bing Image Creator 开始支持多语言 ,目前已支持中文等 100 多种语言。此前该功能仅限于英语,现在用户可以使用中文在内的多种语言生成图像。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人