:开源的视觉-语言(VL)模型,旨在实现真实世界的视觉语言理解。

:开源的视觉-语言(VL)模型,旨在实现真实世界的视觉语言理解。 它具有广泛的多模态理解能力,能够处理逻辑图表、网页、公式识别、科学文献、自然图像和复杂场景中的具体智能等。 DeepSeek-VL提供了多个模型版本,包括不同规模和功能的模型,以满足不同的研究和商业应用需求。

相关推荐

封面图片

阿里巴巴开源能理解图像的 AI 模型 Qwen-VL

阿里巴巴开源能理解图像的 AI 模型 Qwen-VL 阿里巴巴周五开源了能理解图像和完成更复杂对话的 AI 模型和 Qwen-VL-Chat。阿里巴巴称,Qwen-VL 基于 Qwen-7B,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出,它使用了约 1.5B 的图文数据训练。在四大类多模态任务的标准英文测评中上,Qwen-VL 均取得同等通用模型大小下最好效果;支持英文、中文等多语言对话,端到端支持图片里中英双语的长文本识别;支持多图输入和比较,指定图片问答,多图文学创作等;相比于目前其它开源 LVLM使用的 224 分辨率,Qwen-VL 是首个开源的 448 分辨率的 LVLM 模型。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注。Qwen-VL 和 Qwen-VL-Chat 使用名为 Tongyi Qianwen LICENSE AGREEMENT 的许可证,有限制条件,如果商业使用,则需要从阿里巴巴获得授权。来源 , 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

LLaV:一个拥有类似 GPT-4 的大语言+视觉模型

LLaV:一个拥有类似 GPT-4 的大语言+视觉模型 “使用机器生成的指令跟踪数据对大型语言模型 (LLM) 进行指令调优提高了新任务的零样本能力,但这一想法在多模式领域的探索较少。 所以,我们开始尝试使用纯语言 GPT-4 生成多模态语言图像指令跟踪数据。通过对此类生成的数据进行指令调整,并推出了 LLaVA:大型语言和视觉助手。 这是一种端到端训练的大型多模态模型,连接视觉编码器和 LLM 以实现通用视觉和语言理解。 早期实验表明,LLaVA 展示了令人印象深刻的多模型聊天能力,有时在看不见的图像 / 指令上表现出多模态 GPT-4 的行为,并且与合成多模态指令跟随数据集上的 GPT-4 相比,相对分数达到了 85.1%。 当在 Science QA 上进行微调时,LLaVA 和 GPT-4 的协同作用达到了 92.53%,这个准确率颇高。 因此,我们在 GitHub 正式开放 GPT-4 生成的视觉指令调整数据、模型和代码库。” |||||

封面图片

微软公布可以理解图像内容的 AI 模型

微软公布可以理解图像内容的 AI 模型 微软的研究人员介绍了多模态模型 ,它可以分析图像内容,解决拼图问题,进行视觉文本识别,通过视觉智商测试,并理解自然语言指令。研究人员认为,整合了文本、音频、图像和视频等不同输入模式的多模态人工智能,是建立人工通用智能(AGI)的关键步骤,可以执行人类水平的一般任务。他们在一些测试中评估了 Kosmos-1 的能力,包括语言理解、语言生成、无光学字符识别的文本分类、图像说明、视觉问题回答、网页问题回答和零样本图像分类。微软称,在许多这些测试中,Kosmos-1 的表现超过了目前最先进的模型。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

谷歌发布史上最大的视觉语言模型 PaLM-E

谷歌发布史上最大的视觉语言模型 PaLM-E 谷歌 PaLM-E 有着5620亿参数 (ChatGPT 为1750亿参数) ,结合了 PaLM-540B 语言模型与 ViT-22B 视觉模型。将现实世界的连续传感器模态直接纳入语言模型,"为AI移植眼睛"从而建立单词和感知之间的联系。 PaLM-E 直接从机器人摄像头获取原始图像数据,并根据自然语言指令进行动作规划和执行,这样就避免了人工预处理或标注数据的需要,可以端到端自主学习这些任务。 研究团队同时发现: 1. 语言模型越大,在视觉语言和机器人任务训练时就越能保持其语言能力,PaLM-E 的5620亿的参数量刚好让它保留住了几乎所有语言能力。 2. "通才AI"的正迁移能力,同时在多个任务领域训练的 PaLM-E,单任务能力相比"专精AI"显着提高。 3. 除了人机交互方面有着重大进展,团队还发现了 PaLM-E 有着诸如多模态思维链推理和多图像推理等新兴能力,在 OK-VQA 视觉问答基准测试上达成了新的 SOTA (最佳水平AI)。

封面图片

是面向图文理解的开源多模态大模型系列。该系列模型接受图像和文本输入,并提供高质量的文本输出。目前发布了两个版本的模型,旨在实现领

是面向图文理解的开源多模态大模型系列。该系列模型接受图像和文本输入,并提供高质量的文本输出。目前发布了两个版本的模型,旨在实现领先的性能和高效的部署: MiniCPM-V 2.8B:可在终端设备上部署的先进多模态大模型。最新发布的 MiniCPM-V 2.0 可以接受 180 万像素的任意长宽比图像输入,实现了和 Gemini Pro 相近的场景文字识别能力以及和 GPT-4V 相匹的低幻觉率。 OmniLMM-12B:相比同规模其他模型在多个基准测试中具有领先性能,实现了相比 GPT-4V 更低的幻觉率。

封面图片

是一个结合了视觉基础模型的系统,使用户能够超越语言格式与 ChatGPT 交互,解决复杂的视觉任务。

是一个结合了视觉基础模型的系统,使用户能够超越语言格式与 ChatGPT 交互,解决复杂的视觉任务。 ChatGPT 正在吸引跨领域的兴趣,因为它提供了一种语言界面,具有跨多个领域的卓越对话能力和推理能力。 然而,由于 ChatGPT 是用语言训练的,它目前无法处理或生成来自视觉世界的图像。同时,Visual Foundation Models,如 Visual Transformers 或 Stable Diffusion,虽然表现出强大的视觉理解和生成能力,但它们只是特定任务的专家,具有一轮固定的输入和输出。 为此,我们构建了一个名为 \textbf{Visual ChatGPT} 的系统,其中包含不同的视觉基础模型,使用户能够通过以下方式与 ChatGPT 进行交互: 1)不仅发送和接收语言,还发送和接收图像 2)提供复杂的视觉问题或视觉编辑指令,需要多个 AI 模型进行多步骤协作。 3) 提供反馈并要求更正结果。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人