是为大型语言模型实现的高效转发服务。其核心功能包括 用户请求速率控制、Token速率限制、智能预测缓存、日志管理和API密钥管理

是为大型语言模型实现的高效转发服务。其核心功能包括 用户请求速率控制、Token速率限制、智能预测缓存、日志管理和API密钥管理等,旨在提供高效、便捷的模型转发服务。 无论是代理本地语言模型还是云端语言模型,如 LocalAI 或 OpenAI,都可以由 OpenAI Forward 轻松实现。 得益于 uvicorn, aiohttp, 和 asyncio 等库支持,OpenAI-Forward 实现了出色的异步性能。 主要特性 全能转发:可转发几乎所有类型的请求 性能优先:出色的异步性能 缓存AI预测:对AI预测进行缓存,加速服务访问并节省费用 用户流量控制:自定义请求速率与Token速率 实时响应日志:提升LLMs可观察性 自定义秘钥:替代原始API密钥 多目标路由:转发多个服务地址至同一服务下的不同路由 黑白名单:可对指定IP进行黑白名单限制 自动重试:确保服务的稳定性,请求失败时将自动重试 快速部署:支持通过pip和docker在本地或云端进行快速部署

相关推荐

封面图片

一键部署你的专属AI代理

一键部署你的专属AI代理 OpenAI-Forward 是为大型语言模型实现的高效转发服务。其核心功能包括 用户请求速率控制、Token速率限制、智能预测缓存、日志管理和API密钥管理等,旨在提供高效、便捷的模型转发服务。 无论是代理本地语言模型还是云端语言模型,如 LocalAI 或 OpenAI,都可以由 OpenAI Forward 轻松实现 标签:#代理 #AI #chatGPT 链接:https://github.com/KenyonY/openai-forward

封面图片

大型AI模型出现的不可预测的能力

大型AI模型出现的不可预测的能力 在去年组织的一次测试中,研究人员输入不同的提示去测试不同规模大语言模型的能力。其中之一是一个女孩和三条鱼的绘文字,询问它们描述了哪部电影。最小的模型产生了超现实的答案:“The movie is a movie about a man who is a man who is a man”。中等复杂度的模型猜测是《Emoji大电影》,最复杂的模型一锤定音《海底总动员(Finding Nemo)》。计算机科学家对大语言模型的表现非常吃惊。语言模型已经研究了几十年,五年前最强大的模型是基于递归神经网络,本质上是根据提供的文本字符串猜测下一个单词是什么,所谓递归是从输出中不断学习,利用反馈去改进性能。2017 年 Google Brain 的研究人员提出了被称为 transformer 的新型架构。递归网络是逐字分析句子,transformer 则是同时处理所有单词,它能并行处理大块文本。Transformers 能通过增加模型的参数快速扩展语言模型的复杂度。2020 年 OpenAI 的研究人员发现随着参数规模的增加语言模型改进了其能力和准确度。但大语言模型也同时带来了一些始料未及的东西。研究人员发现大语言模型产生了数以百计的“新”能力,这种行为被称为涌现。研究人员如今正努力去识别新的涌现能力,以及找出背后的原因本质上是去尝试预测不可预测性。了解涌现可揭示出 AI 和一般机器学习深层问题的答案,如复杂模型是真的在做新事情,还是极其擅长统计。它还可帮助研究人员去利用潜在的益处和减少涌现风险。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人