-轻量级LLM交互框架:简化生产代码中语言模型的应用,提供结构化Pydantic模型与非结构化文本输出的互操作性,支持LiteL

-轻量级LLM交互框架:简化生产代码中语言模型的应用,提供结构化Pydantic模型与非结构化文本输出的互操作性,支持LiteLLM等语言模型,定义提示为Python函数,支持异步批处理和快速迭代,适用于大规模生成任务 | #框架

相关推荐

封面图片

:为大型语言模型(LLM)设计的结构化生成语言,旨在加速和更好地控制与LLM的交互。

:为大型语言模型(LLM)设计的结构化生成语言,旨在加速和更好地控制与LLM的交互。 特点包括:灵活的前端语言,允许轻松编程LLM应用,支持多个连锁生成调用、高级提示技术、控制流、多模式、并行处理和外部交互;具备高性能运行时,使用RadixAttention可以显著加速复杂LLM程序的执行,自动跨多个调用重复使用KV缓存,同时支持连续批处理和张量并行处理。

封面图片

大规模结构化网络文本提取工具,可大规模提取优质文本数据,由Hugging Face Space提供,支持自动化内容筛选和再利用。

大规模结构化网络文本提取工具,可大规模提取优质文本数据,由Hugging Face Space提供,支持自动化内容筛选和再利用。 FineWeb是一个大规模结构化网络文本的提取和过滤系统,利用Hugging Face的机器学习模型从网页中提取和过滤出高质量的文本内容,可以快速处理大量网页,并根据可配置的过滤规则提取出结构化的数据。用户可以指定主题、语言等参数,FineWeb会返回与这些规则匹配的文本内容。 FineWeb利用DistilBERT模型进行主题分类,利用ToxicBERT模型过滤掉低质量和有毒内容,用户可以微调这些模型来优化提取文本的质量。 FineWeb使得大规模高质量网络文本的获取成为可能,为自然语言处理任务提供了极为宝贵的数据来源,未来工作将提升模型性能,扩充支持语言,并考虑将其作为API服务对外开放。 | #工具

封面图片

【书名】麦肯锡结构化高效沟通

【书名】麦肯锡结构化高效沟通 【作者】周国元 【格式】#epub #mobi #azw3 #pdf 【分类】#自我提升 #沟通 【简介】书中的沟通理论和实践,源自作者多年麦肯锡战略咨询的实战经验,也有部分内容源自作者给企业高管培训课程的讲义,是作者20多年积淀的思考与总结。书中提供了多种沟通框架与技巧,如金字塔、故事线、SCP模型、多维度图谱等,辅以易懂的案例和练习,相信能使你的沟通与表达能力得到不断精进。 下载 频道 群组 商务

封面图片

开源的基础模型能力评测框架,提供了一套轻量级、易于使用的评测体系,支持主流大模型的性能评估。

开源的基础模型能力评测框架,提供了一套轻量级、易于使用的评测体系,支持主流大模型的性能评估。 其主要特点如下: 轻量易用的评估框架:无缝设计,界面直观,依赖性极小,部署轻松,可扩展性极佳,适应多样化评估场景。 评估方式灵活多样:支持统一提示模板,评估指标丰富,可个性化定制,满足特定需求。 高效、快速的推理部署:支持torch、vLLM等多种模型部署策略,实现多实例部署,实现快速评估流程。 公开透明的开源排行榜:维护开放、可追溯、可复制的评估排行榜,由社区更新驱动,以确保透明度和可信度。 官方权威评测数据:采用广泛认可的官方评测集,确保评测的公平性和标准化,确保结果具有可比性和可重复性。 全面而广泛的模型支持:为广泛的模型提供支持,包括来自 Huggingface 开源存储库的模型和个人训练的模型,确保全面的覆盖范围。 | #框架

封面图片

一款开源的SQL替代品、结构化编程语言: | #替代品

一款开源的SQL替代品、结构化编程语言: | #替代品 该语言针对 SQL 的各类短板进行优化,开发了以下这些功能: - 独立于数据库的轻量级计算能力; - 支持有序计算和分步计算; - 直接读取多个数据库,实现混合数据计算; - 提供了大量的基础高性能算法(其中很多是业界首创)、高效的存储格式; - 与 Excel 结合,支持在 Excel 中使用 SPL 函数。 语言提供了精心设计、异常丰富的库函数,以及简单实用的语法,让大家在执行数据批量处理工作时,能够更加得心应手。 此外,项目中配套了颇为详细的中文教程,开发者可跟着动手学习一些关于数据库、数据处理等大数据相关知识。

封面图片

数据分析引擎:。拥有低代码、高性能、轻量级和全功能的特点,相较于传统 SQL 技术,使用 esProc SPL 可以显著降低整体

数据分析引擎:。拥有低代码、高性能、轻量级和全功能的特点,相较于传统 SQL 技术,使用 esProc SPL 可以显著降低整体应用成本。 由于 SPL 面向结构化和半结构化数据,因此还可用作分析型数据库和数据计算中间件,应用于线下跑批和在线查询场景。 其独创的 SPL 语法使编码更简单且运行效率更高。技术特性包括:算法引擎、存储引擎、多源混算、并行框架、敏捷语法、嵌入集成、数据固化和实时数据。 SPL 支持多数据源混合计算,可无缝集成到应用中,具备良好的集成性和轻量级特性。在性能、开发效率、灵活性和资源节约等方面具有显著优势。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人