苹果供应商TDK称固态电池取得突破

苹果供应商TDK称固态电池取得突破 日本 TDK 开发出了全固态电池用新材料。通过应用于在蓄电容量中非常重要的“电解质”,与以往产品相比,蓄电池的能量密度提高了100倍。预计将搭载于智能手表和助听器等小型设备,最早将于2025年实现样品供货。此次成功开发出了电解质的新材料。该公司表示,此次开发的属于氧化物类材料“更详细的信息没有公布”。通过新材料能提高能量密度这一点获得了确认。 、

相关推荐

封面图片

TDK株式会社称在电池技术上取得突破

TDK株式会社称在电池技术上取得突破 全球最大智能手机电池制造商 TDK株式会社宣布开发出固态电池电解质使用的新材料,将用于固态电池产品 CeraCharge,其能量密度达到了每升 1,000 瓦时,是旧产品的 100 倍,目前市场上最先进的锂离子电池能量密度为每升 500 瓦时,TDK 的产品提升了一倍。新电池将取代旧的纽扣式电池,用于无线耳机、智能手表和助听器等可穿戴设备,TDK 计划最早 2025 年提供样品供货。 via Solidot

封面图片

苹果供应商TDK宣布新进展 固态电池能量密度实现100倍突破

苹果供应商TDK宣布新进展 固态电池能量密度实现100倍突破 该公司称,其竞争对手们也在推进小型全固态电池的开发,目前已有产品最高可提供50Wh/L 的能量密度。相比之下,使用传统液体电解质的可充电硬币电池可提供约400 Wh/l的能量密度。TDK首席执行官Noboru Saito表示,“我们相信,我们新开发的固态电池材料可以为社会的能源转型做出重大贡献。我们将继续朝着早期商业化的方向发展。”最新突破TDK是一家在全球范围内久负盛名的日本电子元器件企业,2005年全资收购了ATL股权,将产品扩大到智能手机市场,目前TDK ATL占有全球三分之一以上的手机电池市场份额,也是苹果公司的主要供应商。此次,TDK所研发出的新电池将由全陶瓷材料制成,还包含了氧化物系固态电解质和锂合金负极。这种电池具有高储电能力,将能实现更小的尺寸和更长的工作时间,其中的氧化物材料则提供了高度的稳定性和安全性。这种技术将取代现有的小型电子产品中的硬币型电池。TDK计划从明年开始向客户提供新电池原型的样品,并希望能够在那之后投入大规模生产。业内专家认为,这一突破是储能技术向前迈出的最新一步,不过,在其大规模生产的道路上面临着重大障碍,尤其是在生产更大尺寸的电池上。TDK也指出,这种电池技术所使用的陶瓷材料具有更安全、更轻便等潜在优势,但同时也意味着,生产更大尺寸的电池将更加脆弱,这一点在制造汽车电池、乃至智能手机电池上存有障碍。挑战多多数据和分析公司Wood Mackenzie的高级研究分析师Kevin Shang表示,“不利于机械加工的特性”,以及大规模生产的难度和成本,都是固态氧化物电池应用于智能手机的挑战。另有业内专家指出,固态电池最重要的应用可能是在电动汽车上,因为它可以提高行驶里程。目前日本企业是推动固态电池技术商业化的先锋:丰田计划最早在2027年实现这一目标,日产计划在2027年实现,本田则计划在2030年底实现。不过,人们仍然怀疑该技术在电动汽车上应用的可行性、以及对该技术能有多快实现表示怀疑。全球最大电动汽车电池制造商宁德时代的创始人兼首席执行官曾毓群3月份在接受媒体采访时表示,日本汽车制造商等鼓吹的电动汽车固态电池距离商业化还有数年时间,这项技术还不够完善,缺乏耐用性,且仍然存在安全问题(比如电池在车祸中破裂导致的后果等)。 ... PC版: 手机版:

封面图片

固态电池,小心被“玩”坏

固态电池,小心被“玩”坏 来源/镜观台拍摄海外市场方面,丰田计划2027年实现全固态电池装车;韩国SKOn正在开发高分子氧化物复合和硫化物两种固态电池,目标是到2026年生产出原型产品,2028年实现商业化;三星SDI正在开发一种没有负极的固态电池,预计将于2027年量产。固态电池的消息满天飞,动力电池的霸主宁德时代也不得不出来发声。宁德时代首席科学家吴凯表示,全固态电池的成熟度指标,若用1-9数字表示,宁德时代目前的成熟度在4的水平,目标到2027年到7-8的水平。简言之,宁德时代的固态电池离量产还尚早。在全固态电池研发方面已有十多年的积累,且有近千人研发团队的宁德时代尚且如此,近一两年量产,甚至宣称已经搭载上车的固态电池,其成色问题就值得商榷了。固态电池虽好,经不起“恶搞”新能源汽车行业发展离不开动力电池,目前的动力电池无论是三元锂电池还是磷酸铁锂,虽然在整车安全、续航里程等方面还在进步,但一定程度上在技术上已经很难有大的突破了。随着锂离子电池成本优化接近极限,新能源汽车产业正迫切寻求技术革新以突破现有瓶颈。固态电池作为下一代电池技术的明星产品,凭借其在安全、能量密度及循环寿命方面的显著优势,被视为推动电动汽车发展的新引擎。所谓固态电池,顾名思义,是和液态电池相对应的,是一种使用固态电极和固态电解质的电池。目前市面上主要的锂离子电池内置是含有液态电解质的。传统液态电池由正极、负极、电解液、隔膜四大部分组成。固态电池用固态电解质替换传统液态电解液和隔膜。固态电池的核心特征就在于使用固态电解质,这也是实现固态电池高能量密度、高循环稳定性、高安全性的关键。其工作机理与传统锂电池一致,依靠锂离子在正极和负极之间往返移动,进行化学能和电能之间的转换与储存。根据液态电解质的含量逐步下降,固态电池发展路径可分为:半固态电池、准固态电池和全固态电池。这也就给了一些车企在宣传上提供了“便利”,第一家、第一款、第一代的修饰语层出不穷。腾势汽车总经理兼首席共创官赵长江也忍不住在微博吐槽“就是在玩文字游戏”。中科院院士、清华大学教授欧阳明高也认为,中国在全固态电池领域的研发,目前来看认识还不统一。显然,过度炒作对固态电池的发展极为不利。事实上,作为全固态电池的过渡方案,半固态电池在性能上已大幅提升,安全性较好、能量密度较高、循环寿命更长、工作温度范围更宽、耐挤压、耐震动等。但从制造工艺来说,半固态电池基本可沿用现有液态电池的制造工艺,生产难度远远小于全固态。液态变固态,换“汤”也换“药”但液态电池要直接升级为固态电池,就需要“改头换面”了。如果把动力电池比作汤药,那电解质可以说是“汤”,正负电极和隔膜可说成是“药”。从液态电池到固态电池,不光是把“汤”换了,液态电解质变成固态,“药”也逐步换了。基于目前固态电池的发展历程,还可以将固态电池的发展分为三个阶段:第一阶段:将传统的电解液换成固态电解质,正负极和传统用的是一样,均采用负极石墨和正极三元锂或磷酸铁锂;第二阶段:更换负极材料,取消掉负极的石墨或硅,使用金属锂来提升能量密度;正极不变,采用磷酸铁锂或者三元材料。第三阶段:正负极都换,负极用金属锂,正极就可以换成不含锂的高能量的材料。如此来看,第一阶段换的就是“汤”,第二三阶段就是把“药”也换掉了。换“汤”比较好理解,固体电解质相对于电解液,电化学范围更广(电压更广),电解质不参与化学反应,让锂离子通过。因此,可以选择容量更大的正极材料,或者选择电压差更大的正负极材料,从而提高能量密度。那为什么要把作为“药”的正负极也更新换代呢?按照目前提高电池能量密度的手段,在正极端不断地提高镍的含量虽然可以提升电池能量密度,但是高镍电池对电池的稳定性要求具备更高的电池管理基础。因此,三元锂短期内要突破一个量级还是有一定的挑战。未来,可能也只有固态电池会将电池能量密度提升一个量级。太蓝新能源就在近日宣布成功制备出世界首块车规级单体容量120Ah,实测能量密度达到720Wh/kg的超高能量密度体型化全固态锂金属电池。作为对比,目前磷酸铁锂电池的能量密度为160-180wh/kg左右,三元锂在150-250Wh/kg之间。另外,固态电池凭借自身较高的机械强度在运用的过程中可以抑制电池循环使用之中的锂枝晶的刺穿,使锂金属负极的应用不再是梦想。把电极换为金属锂,其比容高,电压大,避免了液态电池用金属锂作负极会因多次充放电粉化、枝晶生长,导致循环性差,甚至枝晶刺穿薄膜,引起短路的风险。固态想上位,至少还需20年?这些显然就是固态电池大受欢迎的原因所在。高安全性一定是固态电池的首要优势。根据有关数据,新能源汽车起火事故原因中,电池自燃占比31%。相较之下,固态电解质不可燃、耐高温、无腐蚀、不挥发、不漏液,同时具有一定机械强度,安全性更好;半固态电解质中液体占比也小于10%,可燃性大大降低。五一假期发生的多起新能源车燃烧事件,更让消费者期待固态电池的到来。同时,固态电池拥有更高能量密度和较小体积。固态电池电化学窗口宽,能承受更高电压(5V以上),材料选择范围广。因此,可通过采用高比容量的正极、负极材料,使能量密度达到500Wh/kg甚至更高,远超液态350Wh/kg理论极限。而固态电解质取代隔膜和电解液,正负极之间的距离可以缩短到只有几到十几个微米,从而大幅降低电池厚度。因此,同样电量情况下,固态电池体积更小。另外,固态电池还具备宽温区运行的优势。电动车在冬季续航里程之所以下滑明显,主要在于液态电解质在冬季低温环境下流动性下降。而固态电解质可以在-30℃至100℃的更广泛温度范围内稳定工作。当然,固态电池也并非完美无缺,目前来看还是有很多缺点存在的。比如:与液态电解质相比,固态电解质与电极材料之间的接触面积较小,导致离子传输速度较慢,影响了电池的充电和放电效率;界面电阻太大,使得快充过程中的能量损耗增加,快充效率受限;固态电池的充放电循环次数有限,循环寿命较短;生产技术尚不成熟,工艺复杂,生产效率低,导致其成本远高于液态电池。这些显然都是固态电池全面商业化必须面对的挑战。欧阳明高就表示,全固态电池是公认的下一代电池的首选方案之一,也是下一代电池技术竞争的关键制高点,但是也要注意防范激进技术路线带来的颠覆性风险。“液态电池的应用周期至少还有20年。固态电池要想替代液态锂离子电池50%的市场份额,至少需要20至30年。”欧阳明高如是说。 ... PC版: 手机版:

封面图片

中信证券:固态电池材料 2024 年起逐步兑现业绩,关注聚合物路线材料体系革新的投资机会

中信证券:固态电池材料 2024 年起逐步兑现业绩,关注聚合物路线材料体系革新的投资机会 中信证券研报指出,基于固态电池 2027 年量产的预期,我们判断 2024 年起固态电池相关材料的生产商将依托于各电池厂商中试产线开始批量供货并兑现业绩。聚合物固态电解质有望率先实现商业化落地,建议关注聚合物电解质材料体系革新下,“从 0 到 1”、弹性显著的新材料投资机会,包括聚合物基体新材料 MOFs/COFs、锂盐新材料 LiTFSI 及添加剂新材料纳米 ZrO2 等。

封面图片

采用新型电沉积方法的全固态电池技术取得突破

采用新型电沉积方法的全固态电池技术取得突破 通过底部电沉积机制稳定锂金属阳极全固态电池的示意图。资料来源:POSTECH应对电池安全挑战在电动汽车和储能系统等各种应用中,二次电池通常依赖于液态电解质。然而,液态电解质的易燃性带来了火灾风险。这促使人们不断努力探索在全固态电池中使用固态电解质和金属锂(Li),从而提供更安全的选择。在全固态电池的运行过程中,锂被镀在阳极上,利用电子的运动产生电力。在充电和放电过程中,锂金属会经历失去电子、转化为离子、重新获得电子和电沉积回金属形态的循环过程。然而,锂的任意电沉积会迅速耗尽可用的锂,导致电池的性能和耐用性大幅降低。阳极保护的创新为解决这一问题,研究团队与浦项制铁 N.EX.T Hub 合作开发了一种由功能粘合剂(PVA-g-PAA)[2]组成的全固态电池阳极保护层。该层具有优异的锂转移特性,可防止随机电沉积并促进"底部电沉积"过程。这可确保锂从阳极表面底部均匀沉积。研究小组利用扫描电子显微镜(SEM)进行了分析,证实了锂离子的稳定电沉积和分离[3]。这大大减少了不必要的锂消耗。研究小组开发的全固态电池还证明,即使锂金属薄至 10 微米(μm)或更薄,也能长时间保持稳定的电化学性能。领导这项研究的 Soojin Park 教授表达了他的承诺,他说:"我们通过一种新颖的电沉积策略设计出了一种持久的全固态电池系统。通过进一步研究,我们的目标是提供更有效的方法来提高电池寿命和能量密度。在合作研究成果的基础上,浦项制铁控股公司计划推进锂金属阳极的商业化,这是下一代二次电池的核心材料。"说明电沉积通过电解液中的电流将金属沉积到浸没在电解液中的电极上的方法PVA-g-PAA聚(乙烯醇)-接枝-聚(丙烯酸)脱离脱离或分离,金属锂失去电子并转化为锂离子的现象编译自:ScitechDaily ... PC版: 手机版:

封面图片

固态电池研发之难 连宁王都连声叫苦

固态电池研发之难 连宁王都连声叫苦 近年来,随着海内外多家企业接连给出固态电池的量产时间点,业内对固态电池走向落地应用的期望值有所提升,二级市场也纷纷作出反应,与固态电池相关的概念股今年接连涨停。为何行业与资本市场对此纷纷看好这项技术?作为动力电池的新形态,其是否会替代目前主流的三元锂电池和磷酸铁锂电池?动力电池的“终极路线”所谓固态电池,简单理解即一种使用固体电极和固体电解质的电池。现有的动力锂电池材料体系包含碳/硅负极、多孔隔膜以及液体电解质,通过锂离子的移动而产生电流。而全固态电池是一个完全致密的状态,采用固态电解质和固态隔膜,碳/硅负极改为金属锂负极,充电时,锂金属会沉积在负极上,在放电的过程中溶解。基于这种材料体系的转变,固态电池有着液态电池无法企及的优势。例如,固态电池更为稳定,不易泄漏、不易燃烧,大大降低了电池起火爆炸的风险,安全性更高。另外,由于能量密度更高,可达到 400Wh/kg 以上(作为对比,磷酸铁锂电池的能量密度一般在 100Wh/kg~180Wh/kg,三元锂电池的能量密度通常在 150Wh/kg~250Wh/kg),其在性能表现上也优于液态电池,充电速度更快(最高可超过 10C)、续航里程更长。同时,全固态电池的电解质在 -30°C 和 100°C 的范围内都不会凝固,不会气化,这意味着冬天在寒冷地区不用担心续航问题,也不需要很复杂的热管理。这也就不难理解为何固态电池备受业界推崇,成为海内外车企争相布局的领域。从全球厂商的研发路径来看,固态电池主要有聚合物、氧化物和硫化物三种研发路线。不过,目前尚未有任何一种技术路径为绝对性方向,而是都处在探索阶段。“无论是聚合物、氧化物还是硫化物,目前很难有一种电池的所有性能都比别的电池有优势,而是各有优缺点。”广汽研发人员告诉虎嗅汽车。在广汽看来,未来固态电池的终极形态会是多元的复合体系,于是广汽全固态电池基于两条路线并行推进开发一个是以硫化物为主的复合体系,另一个是聚合物为主的复合体系。宁德时代同样认为没有一种固态电解质是十全十美的,其更为看好硫化物技术路线,认为其能够更快走向量产。同样在硫化物全固态电池领域布局的还有丰田,但双方在硫化物空气稳定性和制造工艺上采用了不同的策略。全球各家厂商都希望攻克全固态电池,但目前尚未有真正实现量产攻坚的玩家。需要指出的是,虽然近年来行业内有部分车企宣称用上了固态电池,但实际上是半固态电池,而非并非真正的固态电池形态。“根据行业内规则,一般是按液态电解质占电芯的比重来分:液态(25wt%)、半固态(510wt%)、准固态(05wt%)和全固态(0wt%)。”广汽研发人员告诉虎嗅汽车,“不管是液态电池还是半固态电池,只要电池内部存在电解液,一旦破损泄漏都会有短路起火的风险,与当前常规液态锂离子电池并无本质差异。”固态电池,可望不可及固态电池百般好,但无奈这是块“饼”。较早一批从事固态电池研发的厂商已经在这条赛道上走了十多年,丰田从 2012 年开始布局研发,宁德时代也差不多在这一时期启动研究,但都没能将固态电池推到量产阶段。从国内外车企透露的量产时间点来看,固态电池的产业化时间大概在 2027-2030 年。需要厘清的是,“上车不等于大规模量产”,推出产品形态到大规模量产落地之间还存在多方面的技术攻坚。“五年后肯定会有固态电池的车出来,再过三五年会大面积铺开。”吉利研究院专家告诉虎嗅汽车,但考虑到目前各家车企对固态电池的重视程度以及技术快速推进,量产时间可能提前。固态电池研发之难,连宁王都连声叫苦。曾毓群曾在公开场合表示,“宁德时代已经在这方面投资了 10 年,固态电池只有在使用新型化学材料、负极电极使用纯锂金属的情况下才会有很大优势,要将这种电池推向市场还有很多困难。”首先是电解质材料选择上,以相对主流的硫化物固态电解质需要的硫化锂为例,后者化学性质不稳定,与空气、水反应都会生成有毒化合物,生产环境控制要求严苛,量产困难,由于与目前的电池材料体系差别巨大,固态电池缺乏成熟的材料供应商。在正负极材料上,由于硅/碳负极体积易膨胀大不适用于固态电池,固态电池的正负极材料通常会选择一些能提高能量密度的金属,而锂金属负极现在还不成熟。在界面工程与稳定性上,固态电池中的电解质与正负极之间的界面问题也是一大挑战。由于采用固体电极和固体电解质,其有效接触能力较弱,会造成影响电池性能的界面阻抗。另外,由于固体电解质导电率差、采用锂金属易发生枝晶生长存在安全风险等问题,这些亟待攻关的技术难点。再者,对于量产和普及来说,全固态电池还面临着成本的问题,包括材料成本和制造成本。据中邮证券测算,目前固态电池较液态电池成本高出 30% 以上。材料层面,固态电解质目前仍难以做到轻薄化,用到的部分稀有金属原材料价格较高,叠加为高能量密度使用的高活性正负极材料尚未成熟,固态电解质和正负极成本都不低。在生产层面,固态电池的生产工艺相对复杂,成本也较高。可以预见,全固态电池短期内难以实现大规模的商业化。从理论层面来看,固态电池比液态电池有着多方面的优势,但这项被称为“动力电池领域的珠穆朗玛峰”的技术还仅是将来时形态,即使在三五年内能够有技术突破,但要形成替代,还需突破成本关口。从产业态度来看,未来 10 年无疑是全固态电池研发的关键机遇期。但对于一项新兴技术,更重要的是聚焦于技术层面的攻坚,而不是虚炒营销概念,将其作为宣传和推起资本热度的手段。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人