清华教授:ChatGPT无法实现非0即1的精确计算

清华教授:ChatGPT无法实现非0即1的精确计算 清华大学长聘副教授、聆心智能创始人、国家杰青获得者黄民烈表示,ChatGPT存在不足和缺陷,比如,无法实现数学计算和符号推理,具体表现为无法实现非0即1的精确计算。 因为ChatGPT本质上是一个语言模型,其体现的能力来源于对训练数据的拟合;其运行机制中并没有显式的逻辑推理与判断。此外,ChatGPT还存在准确性、安全性等方面的问题。

相关推荐

封面图片

清华大学集成电路学院教授魏少军:依靠工艺技术进步已几乎无法实现更高性能的计算

清华大学集成电路学院教授魏少军:依靠工艺技术进步已几乎无法实现更高性能的计算 今日中国半导体行业协会IC设计分会理事长、清华大学集成电路学院教授魏少军在以“创芯未来 共筑生态”为主题的2023中国临港国际半导体大会上对记者表示,当前依靠工艺技术进步几乎无法实现更高性能的计算,特别是从现有计算芯片的主流路线推演,已难以满足Z级超算的性能、功耗和成本需求,需要研发新的计算芯片架构来应对智能化、大算力的新挑战。 来源:

封面图片

清华大学实现芯片领域重要突破!计算能效超现有芯片23个数量级

清华大学实现芯片领域重要突破!计算能效超现有芯片23个数量级 随着人工智能的蓬勃发展,智能光计算作为新兴计算模态,在后摩尔时代展现出远超硅基电子计算的性能与潜力。但最大的痛点是光的计算优势被困在不适合的电架构中,计算规模受到了限制,无法支撑急需高算力与高能效的复杂大模型智能计算。而太极光芯片的计算能效,直接超越了现有智能芯片23个数量级,可以为百亿像素大场景光速智能分析、百亿参数大模型训练推理、毫瓦级低功耗自主智能无人系统提供算力支撑。 ... PC版: 手机版:

封面图片

清华大学集成电路学院团队首次实现亚 1nm 栅极长度晶体管:等效 0.34nm

清华大学集成电路学院团队首次实现亚 1nm 栅极长度晶体管:等效 0.34nm 上述相关成果以 “具有亚 1 纳米栅极长度的垂直硫化钼晶体管”()为题,于 3 月 10 日在线发表在国际顶级学术期刊《自然》(Nature)上。 论文通讯作者为清华大学集成电路学院任天令教授和田禾副教授,清华大学集成电路学院 2018 级博士生吴凡、田禾副教授、2019 级博士生沈阳为共同第一作者,其他参加研究的作者包括清华大学集成电路学院 2020 级硕士生侯展、2018 级硕士生任杰、2022 级博士生苟广洋、杨轶副教授和华东师范大学通信与电子工程学院孙亚宾副教授。 任天令教授团队长期致力于二维材料器件技术研究,从材料、器件结构、工艺、系统集成等多层次实现创新突破,先后在《自然》(Nature)、《自然・电子》(Nature Electronics)、《自然・通讯》(Nature Communications)等知名期刊以及国际电子器件会议(IEDM)等领域内顶级国际学术会议上发表多篇论文。清华大学的研究人员得到了国家自然科学基金委、科技部重点研发计划、北京市自然基金委、北京信息科学与技术国家研究中心等的支持。

封面图片

日本研究人员实现精确控制氮化镓基垂直腔面发射激光器的腔长

日本研究人员实现精确控制氮化镓基垂直腔面发射激光器的腔长 功率转换效率超过 20% 的氮化镓紫色表面发光激光器。资料来源:Tetsuya Takeuchi / 名城大学GaN-VCSEL 由两层被称为分布式布拉格反射镜 (DBR) 的特殊半导体反射镜组成,中间由有源 GaN 半导体层隔开,形成光谐振腔,激光就在其中产生。谐振腔的长度对于控制目标激光波长(即谐振波长)至关重要。迄今为止,已开发出两种基于氮化镓的 VCSEL 结构:一种是底部介质 DBR,另一种是底部氮化铝铟(AlInN)/氮化镓 DBR。这两种结构都能产生光输出功率超过 20 毫瓦、壁塞效率(WPE)超过 10%的 VSCEL。然而,AlInN/GaN DBR 的停止波长带宽较窄,因此 VCSEL 只能发射窄波长范围内的光。此外,传统的腔体长度控制方法需要对测试腔体层进行预实验,以确定其生长速度,这会导致 VCSEL 腔体的估计厚度和最终厚度之间存在误差。这种误差会导致共振波长超出 AlInN/GaN DBR 的窄停止带宽,从而严重影响性能。腔长控制的创新为了解决这个问题,在最近的一项研究中,日本名城大学材料科学与工程系教授竹内哲也领导的研究人员为基于氮化镓的 VCSEL 光腔开发了一种新的原位 腔长控制方法。通过利用原位反射率光谱测量精确控制氮化镓层的生长,研究人员实现了精确的腔长控制,与目标谐振波长的偏差仅为 0.5%。现在,他们进一步扩展了这一创新技术,并展示了完整 VSCEL 的腔长控制。竹内教授解释说:"VCSEL 的腔体不仅包含氮化镓层,还包含氧化铟锡 (ITO) 电极和五氧化二铌 (Nb2O5) 间隔层,而这些都无法通过相同的原位反射率光谱测量系统进行控制。在这项研究中,我们开发了一种精确校准这些附加层厚度的技术,从而实现了高效的 VCSEL。"他们的研究成果发表在《应用物理通讯》(Applied Physics Letters)杂志第124卷第13期上。附加层的校准技术为了校准附加层的厚度,研究人员首先在使用原位空腔控制生长的 GaN 测试结构上沉积了不同厚度的 ITO 电极和Nb2O5间隔层。鉴于原位反射率测量无法用于这些附加层,他们直接使用原位反射率光谱测量来评估这些测试空腔结构的共振波长。获得的共振波长发生了红移,即随着 ITO 和Nb2O5层厚度的增加,波长也随之增加。接下来,研究人员绘制了共振波长偏移与 ITO 和Nb2O5层 厚度的函数关系图,从而获得了有关其光学厚度的准确信息。他们利用这些信息精确校准了目标 VCSEL 共振波长的 ITO 层和Nb2O5层厚度。这种方法产生的共振波长控制偏差非常小,在 3% 以内,在光学厚度方面可与现场控制方法相媲美。最后,研究人员通过在利用原位 腔体控制技术生长的 VCSEL 腔体中加入调谐 ITO 电极和Nb2O5间隔层,制造出了孔径大小为 5 至 20 µm 的 GaN-VCSEL。这些 VCSEL 的峰值发射波长与设计共振波长的偏差仅为 0.1%。值得注意的是,得益于精确的腔长控制,5 微米孔径的 VCSEL 实现了 21.1% 的 WPE,这是一项重大成就。竹内教授总结说:"就像高精度的刻度尺可以制造精细的架子一样,精确地使用氮化镓层的原位厚度控制,结合ITO电极和Nb2O5间隔层的厚度校准,可以实现VCSEL的高度可控制造,是获得高性能和高可重复性的氮化镓基VCSEL的有力工具,可用于高效光电设备。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

微信好友检测单删工具利用非好友无法转账的原理实现

微信好友检测单删工具 利用非好友无法转账的原理实现 需要开启无障碍功能全自动化检测 检测时间根据好友数量而定 #工具 #李跳跳 #真实好友 #微信好友单删检测 频道:@ZYPD123 群组:@mumu_software

封面图片

最近一周最大的 insights 是周伯远教授周六的分享,周教授是清华电子系长聘教授外加IEEE/CAAI FELLOW,是当年

最近一周最大的 insights 是周伯远教授周六的分享,周教授是清华电子系长聘教授外加IEEE/CAAI FELLOW,是当年 IBM WATSON GROUP首席科学家。 Bert 跟 GPT 单向/双向上下文训练的思路差异,Bert 是双向上下文,而 GPT 是单向自回归,之前知道这个实现细节,但没当回事。 周教授做了个非常形象的类比,本质上相当于训练的时候,Bert 是给了「标准答案」的,而 GPT 没给「标准答案」… Bert 追求的是文本生成的局部最优,而不是为了 AGI,因为他们从一开始就不相信语言模型可以实现 AGI。 内心忽然咯噔了一下,「标准答案」不就是「应试教育」吗…自己到目前为止的学习经历里面,好像成长最大的时候,都是来自于解决没有标准答案的问题时。 Invalid media:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人