美国新法案要求人工智能公司披露受版权保护的训练数据

美国新法案要求人工智能公司披露受版权保护的训练数据 美国新法案将迫使科技公司披露用于训练其人工智能模型的任何受版权保护的数据。美国众议员 Adam Schiff (D-CA) 提出的生成人工智能版权披露法案将要求任何为人工智能制作训练数据集的人向版权登记处提交有关其内容的报告。报告应包含数据集中受版权保护的材料的详细摘要以及数据集的 URL (如果可公开获取)。此要求将扩展到对数据集所做的任何更改。公司必须在使用训练数据集的人工智能模型向公众发布之前“不迟于30天”提交报告。该法案不会追溯到现有的人工智能平台,除非其成为法律后对其训练数据集进行更改。

相关推荐

封面图片

美国立法者提交新法案:要求AI公司披露受版权保护的训练数据】

美国立法者提交新法案:要求AI公司披露受版权保护的训练数据】 据 23 日报道,美国两名立法者提交了一份涉及人工智能的新法案《人工智能基础模型透明法案》,要求基础模型的创建人披露训练数据的来源,以便于原始的版权持有者知道自己的作品被“盗用”。据报道,两名众议员 Anna Eshoo 和 Don Beyer 将指示 FTC(联邦贸易委员会)与美国国家标准与技术研究院合作,制定有关于培训数据透明度报告的规则。目前这份法案仍需分配给有关委员会进行讨论,距离完成尚需时日。 快讯/广告 联系 @xingkong888885

封面图片

美众议员提出新法案:AI 公司应当披露受版权保护训练数据使用情况

美众议员提出新法案:AI 公司应当披露受版权保护训练数据使用情况 该法案要求在 AI 模型在向消费者提供之前 30 天内,需要向版权局提交该模型训练数据集中受版权保护作品的完整清单。当现有模型的训练数据集“发生重大改变”时,也必须及时向版权局提交。对违规行为的经济处罚将由版权局根据公司的违规历史和公司规模等因素,逐案作出决定。

封面图片

狡猾的人工智能模型故意破坏训练图像以规避版权问题

狡猾的人工智能模型故意破坏训练图像以规避版权问题 Ambient Diffusion 是一种文本到图像的人工智能模型,它通过使用严重破坏的图像来保护艺术家的版权。文本到图像生成器的一个大问题是,它们能够复制用来训练它们的原创作品,从而侵犯艺术家的版权。根据美国法律,如果你创作了原创作品并将其"固定"为有形的形式,你就拥有了它的版权字面意思是复制它的权利。在大多数情况下,未经创作者授权,不得使用受版权保护的图片。今年5 月,Google母公司 Alphabet 遭到一群艺术家的集体版权诉讼,声称Google未经许可使用了他们的作品来训练其人工智能图像生成器 Imagen。Stability AI、Midjourney 和 DeviantArt(它们都使用了 Stability 的 Stable Diffusion 工具)也面临着类似的诉讼。为了避免这个问题,德克萨斯大学奥斯汀分校和加州大学伯克利分校的研究人员开发了一种基于扩散的生成式人工智能框架,该框架只对已损坏到无法识别的图像进行训练,从而消除了人工智能记忆和复制原创作品的可能性。扩散模型是一种先进的机器学习算法,它通过向数据集逐步添加噪声来生成高质量的数据,然后学习逆转这一过程。最近的研究表明,这些模型可以记忆训练集中的示例。这显然会对隐私、安全和版权产生影响。这里有一个与艺术品无关的例子:人工智能需要接受 X 光扫描训练,但不能记住特定病人的图像,否则就会侵犯病人的隐私。为了避免这种情况,模型制作者可以引入图像损坏。研究人员利用他们的环境扩散框架证明,只需使用高度损坏的样本,就能训练扩散模型生成高质量的图像。根据"干净"(左)和损坏(右)的训练图像生成的环境扩散输出结果上图显示了在使用损坏时图像输出的差异。研究人员首先用 CelebA-HQ 高质量名人图片数据库中的 3000 张"干净"图片对模型进行了训练。根据提示,该模型生成的图像与原图几乎完全相同(左图)。然后,他们使用 3000 张高度损坏的图像对模型进行了重新训练,其中多达 90% 的单个像素被随机屏蔽。虽然模型生成的人脸栩栩如生,但结果却大相径庭(右图)。UT奥斯汀分校计算机科学教授亚当-克里万斯(Adam Klivans)是这项研究的共同作者,他表示:"从黑洞成像到某些类型的核磁共振成像扫描,基本上任何昂贵或不可能拥有全套未损坏数据的研究都会如此。"与现有的文本到图像生成器一样,其结果并非每次都完美无缺。关键是,艺术家们知道像 Ambient Diffusion 这样的模型不会记住并复制他们的原创作品,就可以稍稍放心了。它能阻止其他人工智能模型记住并复制他们的原始图像吗?不会,但这就是法院的职责所在。研究人员已将他们的代码和环境扩散模型开源,以鼓励进一步的研究。可在GitHub 上查阅。该研究发表在预印本网站arXiv 上。 ... PC版: 手机版:

封面图片

硅谷对加州人工智能安全法案不满

硅谷对加州人工智能安全法案不满 美国加利福尼亚州的人工智能重量级企业正在抗议一项州法案,该法案将迫使科技公司遵守严格的安全框架,包括创建一个“切断开关”来关闭其强大的人工智能模型。该法案于上月由加州参议院通过,并将于8月在众议院进行表决。该法案要求加州的人工智能团体向一个新成立的州机构保证,它们不会开发具有“危险能力”的模型,例如制造生物武器或核武器,或协助网络安全攻击。根据拟议中的《前沿人工智能系统安全创新法案》,开发人员必须报告其安全测试,并引入所谓的“切断开关”来关闭他们的模型。 ()

封面图片

人工智能对人工智能生成的内容进行训练将导致人工智能崩溃

人工智能对人工智能生成的内容进行训练将导致人工智能崩溃 用于训练大型语言模型的数据最初来自人类来源,如书籍、文章、照片等,这些都是在没有人工智能的帮助下创建的。但随着越来越多的人使用人工智能来制作和发布内容,一个明显的问题出现了:当人工智能生成的内容在互联网上扩散时,人工智能模型开始对其进行训练。研究人员发现,“在训练中使用模型生成的内容会导致所产生的模型出现不可逆转的缺陷。”他们研究了文本到文本和图像到图像的人工智能生成模型的概率分布,得出结论:“从其他模型产生的数据中学习会导致模型崩溃 这是一个退化的过程,并且随着时间的推移,模型会忘记真正的基础数据分布。”他们观察到模型崩溃发生得如此之快:模型可以迅速忘记它们最初学习的大部分原始数据。这导致它们随着时间的推移,表现越来越差,错误越来越多。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

欧盟批准全球首部《人工智能法案》

欧盟批准全球首部《人工智能法案》 《人工智能法案》提出了人工智能风险等级的分类,这意味着根据人工智能技术的不同应用将对社会可能造成的威胁,应将对其进行不同的对待,该法律禁止应用风险水平被认为“不可接受”的人工智能

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人