河马放的屁威力强大,它们的大便更是所向披靡。

河马放的屁威力强大,它们的大便更是所向披靡。 河马拉屎的同时,会伴随着撒尿,并且摆动着尾巴将屎尿撒向远方。 它们的大便里含有大量的病原体。如果它们将粪便撒到小水泡里,会显著降低水的含氧量,导致鱼类死亡。 你可能有疑问,它们为什么要这么做? 原来,当它们不想交配时,就通过这种肮脏的方式赶走异性。

相关推荐

封面图片

《暴食狂战士 [2023]》| 简介:主角是一名拥有暴食能力的狂战士,在奇幻世界中,他凭借这一特殊能力在战斗中所向披靡。然而,暴

《暴食狂战士 [2023]》| 简介:主角是一名拥有暴食能力的狂战士,在奇幻世界中,他凭借这一特殊能力在战斗中所向披靡。然而,暴食能力也给他带来了一些麻烦和挑战。他在冒险过程中,不断探索能力的极限,与各种怪物和敌人战斗,剧情充满热血战斗与奇幻冒险 |标签:#暴食狂战士 2023# 奇幻战斗动漫 #暴食能力# 狂战士题材 |文件大小 NG| 链接:

封面图片

【所向披靡!#致每一位出征的中国健儿#】精彩绽放不仅在奥运赛场,更在每一个平凡而真实的日常。中国队是心怀抱负的职场新人队,是努力

【所向披靡!#致每一位出征的中国健儿#】精彩绽放不仅在奥运赛场,更在每一个平凡而真实的日常。中国队是心怀抱负的职场新人队,是努力送好每一单的外卖小哥队,是捍卫一方土地的退沙造林队......希望心愿一路生花,为有梦想的人保驾护航。每一位奔赴赛场的中国健儿,加油!#韩红祝愿中国队一路生花#人民日报的微博视频 via 人民日报的微博 Invalid media: video

封面图片

太空沙拉中的致病菌难题:新研究引发宇航员健康担忧

太空沙拉中的致病菌难题:新研究引发宇航员健康担忧 但这中间存在一个问题。国际空间站有很多致病细菌和真菌。国际空间站中的许多致病微生物都具有很强的攻击性,很容易在莴苣和其他植物的组织中定植。一旦人们吃了被大肠杆菌或沙门氏菌侵染的莴苣,就会生病。美国国家航空航天局(NASA)和太空探索技术公司(SpaceX)等私营公司每年为太空探索投入数十亿美元,一些研究人员担心,国际空间站上爆发食源性疾病可能会导致任务脱轨。特拉华大学的研究人员在《科学报告》和《npj 微重力》杂志上发表了一项新研究,他们在模仿国际空间站失重环境的条件下种植莴苣。植物是感知重力的高手,它们利用根来寻找重力。特拉华大学种植的植物通过旋转暴露在模拟的微重力环境中。研究人员发现,这些处于人造微重力环境下的植物实际上更容易受到人类病原体沙门氏菌的感染。UD 植物与土壤科学系校友诺亚-托茨林(Noah Totsline)说,气孔是植物叶片和茎上用来呼吸的微小孔隙,当植物感觉到附近有细菌等压力源时,通常会关闭气孔以保护植物。当研究人员在微重力模拟下向莴苣中添加细菌时,他们发现绿叶菜的气孔不是关闭而是张开了。Totsline 说:"当我们向他们展示似乎是一种压力时,他们仍然保持开放,这确实出乎我们的意料。"两篇论文的第一作者托特斯莱因与植物生物学教授哈什-拜斯(Harsh Bais)、微生物食品安全教授卡利-克尼尔(Kali Kniel)和特拉华生物技术研究所的钱德兰-萨巴纳亚甘(Chandran Sabanayagam)合作。研究小组使用了一种叫做回转器的设备,以旋转器上烤鸡的速度旋转植物。"实际上,植物不知道哪个方向是向上或向下,"Totsline 说。"我们有点混淆了它们对重力的反应"。托特斯莱因说,这并不是真正的微重力,但它能帮助植物失去方向感。最终,研究人员发现,在模拟微重力条件下,沙门氏菌似乎比在地球上的典型条件下更容易侵入叶片组织。此外,Bais 和其他 UD 研究人员还发现了一种名为 B. subtilis UD1022 的辅助细菌在促进植物生长和提高植物抗病原体或其他压力(如干旱)能力方面的作用。他们将 UD1022 添加到在地球上可以保护植物免受沙门氏菌侵袭的微重力模拟中,认为它可以帮助植物在微重力环境中抵御沙门氏菌的侵袭。相反,他们发现这种细菌实际上无法在类似太空的条件下保护植物,这可能是由于这种细菌无法引发迫使植物关闭气孔的生化反应。Bais说:"UD1022在模拟微重力条件下无法关闭气孔,这既令人惊讶,又很有趣,同时还打开了另一扇窗。我猜想,UD1022在模拟微重力下否定气孔关闭的能力可能会使植物不堪重负,使植物和UD1022无法相互交流,从而帮助沙门氏菌入侵植物。"国际空间站上的食源性病原体微生物无处不在。这些细菌存在于我们身上、动物身上、我们吃的食物上以及环境中。因此,UD 微生物食品安全教授卡利-克尼尔(Kali Kniel)自然而然地说,只要有人类的地方,就有细菌病原体共存的可能。据美国国家航空航天局(NASA)称,每次大约有 7 人在国际空间站生活和工作。这里的环境并不是最严密的大约有一栋六居室的房子那么大但仍然是那种细菌可以肆虐的地方。克尼尔说:"我们需要为现在生活在国际空间站上的人和将来可能生活在那里的人做好准备,降低太空风险。必须更好地了解细菌病原体对微重力的反应,以便制定适当的缓解策略"。这两位研究人员长期以来一直将微生物食品安全和植物生物学这两个学科领域结合起来,研究植物上的人类病原体。克尼尔说:"为了以最佳方式降低与绿叶蔬菜和其他农产品污染有关的风险,我们需要更好地了解人类病原体与在太空中生长的植物之间的相互作用。要做到这一点,最好的办法就是采用多学科方法。"地球人口不断增长,太空安全食品需求更大人类要想在月球或火星上生活可能还需要一段时间,但 UD 的研究对外太空居住有很大的潜在影响。根据联合国的一份报告,到 2050 年,地球上的人口将达到 97 亿,到 2100 年将达到 104 亿。此外,加州大学植物生物学教授拜斯说,全世界的食品安全和粮食安全措施已经达到了顶峰。他说:"随着种植粮食的农田逐渐减少,人们很快就会认真考虑替代居住空间的问题。"这些不再是虚构的了"。美国疾病控制和预防中心或美国食品和药物管理局似乎更经常地对地球上的某些莴苣发布召回公告,告诉人们不要食用这种莴苣,因为它有可能感染大肠杆菌或沙门氏菌。拜斯说,绿叶菜是许多宇航员的首选食物,而且很容易在室内环境(如国际空间站的水培环境)中种植,因此确保这些绿叶菜始终可以安全食用非常重要,谁都不希望仅仅因为食品安全事件而导致整个任务失败。解决方案:绝育种子和改良基因那么,如果植物在微重力环境下气孔开得更大,让细菌轻易进入,该怎么办呢?事实证明,答案并没有那么简单。克尼尔说:"从经过消毒的种子开始是降低植物上微生物风险的一种方法。但这样一来,微生物可能会进入太空环境,并以这种方式进入植物体内。"拜斯说,科学家可能需要调整植物的基因,防止它们在太空中把气孔张得更大。他的实验室已经开始采用具有不同基因的不同莴苣品种,并在模拟微重力条件下对它们进行评估。"举例来说,如果我们发现一种植物的气孔会关闭,而我们已经测试过的另一种植物的气孔会打开,那么我们就可以尝试比较这两种不同栽培品种的基因。这将给我们带来很多问题,让我们知道是什么在改变"。他们找到的任何答案都有助于防止太空沙拉今后出现问题。编译自/scitechdaily ... PC版: 手机版:

封面图片

故意感染人类的研究表明为何有些人一开始就对COVID-19免疫

故意感染人类的研究表明为何有些人一开始就对COVID-19免疫 虽然有很多研究对COVID-19对感染者的心理和生理影响进行了研究,但还没有任何研究跟踪了从 SARS-CoV-2 病毒进入鼻腔到发病的整个过程。伦敦大学学院(UCL)最新发表的研究报告改变了这一状况。这项研究被称为英国 COVID-19 人类挑战研究,它故意让 36 名健康、年轻、自愿的成年志愿者通过鼻子感染 COVID 致病病毒。研究前,所有志愿者都接受了严重疾病风险和潜在合并症筛查,并被注射了仍能引起感染的最低剂量的 SARS-CoV-2 病毒。威康传染病团队的研究带头人 Shobana Balasingam 也参与了这项研究,她说:"人体挑战模型是我们了解人体如何应对传染病的一种宝贵方式。这些研究使我们能够密切监测从感染那一刻起发生的情况,让我们能够跟踪免疫反应,直至症状的发展和严重程度"。在让参与者感染病毒后,研究人员立即开始监测他们血液和鼻腔内的细胞,以了解接触病毒后的瞬间发生了什么。通过详细分析,研究人员获得了一个包含 60 多万个单个细胞的数据集,该数据集已成为创建名为"人类细胞图谱"的全人类细胞综合参考图的一部分。研究人员发现,在所有参与者中,血液中的特化粘膜免疫细胞被激活,炎性白细胞减少,而炎性白细胞的作用通常是包围和消灭病原体入侵者。但是,在那些立即清除病毒并抵御感染的参与者中,或者在那些检测结果呈阳性但避免了全身感染的参与者中,他们目睹了前所未有的免疫反应。特别是,他们发现了一种名为 HLA-DQA2 的基因的高背景激活,这是一种向其他细胞发出病毒入侵信号的第一警报系统。他们还发现,与感染病毒的人相比,抵抗病毒能力最强的人的鼻腔特化细胞免疫反应较快,而血细胞的反应较慢。而感染 COVID-19 病毒的一组人在接触病毒五天后才产生鼻腔反应,这表明激活这些鼻腔细胞可能是抵抗这种病毒和其他潜在冠状病毒的关键途径。此外,研究人员还在活化的 T 细胞受体中发现了反复出现的氨基酸模式。韦尔科姆-桑格研究所的艾米丽-莫布里告诉《新图集》:"这些基序在病原体暴露时重复出现,表明它们具有识别SARS-CoV-2病毒中某些东西的共同能力。识别这些特征为建立 TCR 与病原体之间的相互作用模型提供了一个独特的机会。这提高了设计病毒特异性 T 细胞用于治疗的可能性,不仅用于治疗 COVID-19,还可能用于治疗一系列涉及免疫攻击的疾病。"这项研究的资深作者、伦敦大学洛杉矶分校的马尔科-尼科利奇(Marko Nikolić)也表示,希望该团队的研究能带来更好的方法来攻击人体内的病原体。他说:"这些发现揭示了关键的早期事件,这些早期事件要么让病毒占据上风,要么在症状出现之前迅速清除病毒。我们现在对各种免疫反应有了更深入的了解,这可以为开发模仿这些自然保护性反应的潜在治疗方法和疫苗奠定基础。"这项研究发表在《自然》杂志上。 ... PC版: 手机版:

封面图片

Science子刊:新生儿T细胞并非成人T细胞的弱化版

Science子刊:新生儿T细胞并非成人T细胞的弱化版 来自健康供体免疫系统的成体 T 的扫描电子显微镜照片。图片来源:美国国立卫生研究院这项研究成果于2月23日发表在《Science Immunology》杂志上,由康奈尔大学微生物学和免疫学系副教授Brian Rudd和分子生物学和遗传学系教授Andrew Grimson共同领导。成人T细胞在识别抗原、形成免疫记忆和应答重复感染等方面的表现优于新生儿T细胞,这导致人们相信婴儿的T细胞只是成人T细胞的弱化版本。但在COVID-19大流行期间,许多人对婴儿没有患病感到惊讶,从而对这种长期存在的观点提出了质疑。研究人员对了解这些与年龄相关的差异很感兴趣,他们发现,新生儿T细胞参与了免疫系统中不需要抗原识别的部分:免疫系统的先天部分。成人T细胞采用适应性免疫来识别特定病菌,然后再与之斗争,而新生儿T细胞则被与先天免疫相关的蛋白质激活。Brian Rudd表示:“我们的论文表明,新生儿T细胞并没有受损,它们只是与成人T细胞不同,这些差异可能反映了在生命不同阶段对宿主最有用的功能类型。”新生儿T细胞可以参与免疫系统的先天部分。这使得新生儿T细胞能做一些成人T细胞做不到的事情:在感染的最初阶段做出反应,抵御各种未知的细菌、寄生虫和病毒。“我们知道,新生儿T细胞对同一病原体重复感染的保护能力不及成人T细胞。不过实际上,新生儿T细胞具有更强的保护宿主免受早期感染的能力,”Rudd谈道。“因此,不可能说成人T细胞比新生儿T细胞好,或者新生儿T细胞比成人T细胞好。它们只是功能不同而已。”在后续研究中,Rudd想要研究人类成年后持续存在的新生儿T细胞。“我们想了解新生儿T细胞相对数量的变化如何影响成年人对感染的易感性和疾病的结局,”他说。 ... PC版: 手机版:

封面图片

模拟病毒的DNA粒子可提供无免疫副作用的疫苗

模拟病毒的DNA粒子可提供无免疫副作用的疫苗 DNA 粒子制成的疫苗递送平台避免了使用蛋白质粒子时出现的脱靶效应 巴特实验室/麻省理工学院微粒疫苗通常是由携带许多病毒抗原拷贝的蛋白型病毒微粒支架制成。由于它们模拟天然病毒,因此与传统疫苗相比,这些疫苗能产生更强的免疫反应。它们能激活 B 细胞,使其产生针对所传递抗原的特异性抗体。不过,微粒疫苗的一个潜在缺点是,蛋白质支架会刺激产生针对它和它所携带的抗原(也是一种蛋白质)的抗体,从而降低免疫系统对抗原的反应强度。此外,由于机体会产生针对蛋白质平台的抗体,这就限制了它今后作为疫苗载体的使用,即使是用于不同的病毒。现在,麻省理工学院的研究人员开发出了一种基于 DNA 的支架,可以避免这一问题,确保免疫系统只对抗原而不是平台做出反应。该研究的通讯作者之一丹尼尔-凌伍德说:"DNA纳米粒子本身没有免疫原性。如果使用基于蛋白质的平台,你会对平台和感兴趣的抗原产生同样高级别的抗体反应,这会使重复使用该平台变得复杂,因为机体会对它产生高亲和力的免疫记忆"。为了制作支架,研究人员采用了他们以前使用过的"DNA折纸"技术,即折叠DNA,使其模仿病毒的结构。这种技术可以在特定位置附着各种分子,如病毒抗原。将 SARS-CoV-2 穗状病毒蛋白的受体结合部分附着在 DNA 支架上后,他们在小鼠身上进行了测试。他们发现,小鼠并没有像使用蛋白质支架时那样对支架产生抗体,只是对SARS-CoV-2产生了抗体。另一位通讯作者马克-巴特(Mark Bathe)说:"我们在这项研究中发现,DNA不会诱发抗体,从而分散对相关蛋白质的注意力。你可以想象,你的 B 细胞和免疫系统正在接受目标抗原的全面训练,而这正是你想要的让你的免疫系统激光聚焦于感兴趣的抗原。"与其他类型疫苗刺激的 T 细胞不同,B 细胞可以持续数十年,提供长期保护。Bathe说:"免疫学领域的许多人都对微粒疫苗非常感兴趣,因为它们能产生强大的体液免疫,也就是基于抗体的免疫,它有别于基于T细胞的免疫,而mRNA疫苗似乎能更强烈地激发T细胞免疫。"研究结果表明,DNA 支架是基于蛋白质的平台的有效替代品,但不会产生脱靶效应,研究人员目前正在探索是否可以利用它同时传递不同的病毒抗原,以提供对一系列病毒的保护。Lingwood说:"我们有兴趣探索是否能让免疫系统产生更高水平的免疫力,以抵御流感、艾滋病毒和SARS-CoV-2等传统疫苗方法所抵御的病原体。这项研究发表在《自然通讯》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人