《图解大模型》作者: [沙特] 杰伊·阿拉马尔(Jay Alammar) / [荷] 马尔滕·格鲁滕多斯特(Maarten Gr

《图解大模型》 作者: [沙特] 杰伊·阿拉马尔(Jay Alammar) / [荷] 马尔滕·格鲁滕多斯特(Maarten Grootendorst) 出版社: 人民邮电出版社 出品方: 图灵教育 副标题: 生成式AI原理与实战 译者: 李博杰 出版年: 2025-5 页数: 350 本书全程图解式讲解,通过大量全彩插图拆解概念,让读者真正告别学习大模型的枯燥和复杂。 全书分为三部分,依次介绍语言模型的原理、应用及优化。第一部分 理解语言模型(第1~3章),解析语言模型的核心概念,包括词元、嵌入向量及Transformer架构,帮助读者建立基础认知。第二部分 使用预训练语言模型(第4~9章),介绍如何使用大模型进行文本分类、聚类、语义搜索、文本生成及多模态扩展,提升模型的应用能力。第三部分 训练和微调语言模型(第10~12章),探讨大模型的训练与微调方法,包括嵌入模型的构建、分类任务的优化及生成式模型的微调,以适应特定需求。 本书适合对大模型感兴趣的开发者、研究人员和行业从业者。读者无须深度学习基础,只要会用Python,就可以通过本书深入理解大模型的原理并上手大模型应用开发。书中示例还可以一键在线运行,让学习过程更轻松。 #编程 #编程语言 #语言 #模型

相关推荐

封面图片

《卢菁博士AI大模型微调实战训练营》

《卢菁博士AI大模型微调实战训练营》 简介:《卢菁博士AI大模型微调实战训练营》由卢菁博士主讲,是专注于AI大模型微调的实战课程。课程详细介绍AI大模型微调的原理、方法和技巧,通过实际案例和项目,指导学员掌握如何根据具体任务需求对预训练大模型进行微调,以提高模型性能和应用效果,适合AI开发者、数据科学家等专业人士学习 标签:#AI大模型#模型微调#实战训练#AI开发#数据科学 文件大小:NG 链接:https://pan.quark.cn/s/46ad619b27b7

封面图片

Databricks 发布开源指令微调大语言模型 Dolly 2.0

Databricks 发布开源指令微调大语言模型 Dolly 2.0 Databricks 公司两周前发布了它的指令遵循(instruction-following)大语言模型 Dolly,本周三它发布了可授权商业使用的开源指令微调大语言模型。Dolly 2.0 有 120 亿参数,基于 EleutherAI pythia 模型家族,使用高质量的人类生成的指令遵循数据集进行微调。Databricks 开源了 Dolly 2.0 的整个系统,包括训练代码、数据集和模型权重,全都适合商业使用。而目前开源社区流行的 LLaMA 衍生模型使用的是非商业使用授权。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

大语言模型(LLM)微调技术笔记 || #笔记

大语言模型(LLM)微调技术笔记 || #笔记 在预训练后,大模型可以获得解决各种任务的通用能力。然而,越来越多的研究表明,大语言模型的能力可以根据特定目标进一步调整。这就是微调技术,目前主要有两种微调大模型的方法 1:指令微调,目标是增强(或解锁)大语言模型的能力。 2:对齐微调,目标是将大语言模型的行为与人类的价值观或偏好对齐。

封面图片

:赋予大型预训练语言模型遵循复杂指令的能力

:赋予大型预训练语言模型遵循复杂指令的能力 遵循指令的能力对大部分开源大语言模型来说是一个独特的挑战。该项目提出的解决方案是使用LLM本身来生成指令数据。 研究人员开发的Evol-Instruct方法随机选择不同类型的进化操作来将简单指令升级为更复杂的指令,或者创建全新的指令。然后使用进化的指令数据来微调LLM,从而创建WizardLM。

封面图片

Google的教学视频《》,介绍了大型语言模型(Large Language Models,LLMs)的概念、使用场景、提示调整

Google的教学视频《》,介绍了大型语言模型(Large Language Models,LLMs)的概念、使用场景、提示调整以及Google的Gen AI开发工具。 大型语言模型是深度学习的一个子集,可以预训练并进行特定目的的微调。这些模型经过训练,可以解决诸如文本分类、问题回答、文档摘要、跨行业的文本生成等常见语言问题。然后,可以利用相对较小的领域数据集对这些模型进行定制,以解决零售、金融、娱乐等不同领域的特定问题。 大型语言模型的三个主要特征是:大型、通用性和预训练微调。"大型"既指训练数据集的巨大规模,也指参数的数量。"通用性"意味着这些模型足够解决常见问题。"预训练和微调"是指用大型数据集对大型语言模型进行一般性的预训练,然后用较小的数据集对其进行特定目的的微调。 使用大型语言模型的好处包括:一种模型可用于不同的任务;微调大型语言模型需要的领域训练数据较少;随着数据和参数的增加,大型语言模型的性能也在持续增长。 此外,视频还解释了传统编程、神经网络和生成模型的不同,以及预训练模型的LLM开发与传统的ML开发的区别。 在自然语言处理中,提示设计和提示工程是两个密切相关的概念,这两者都涉及创建清晰、简洁、富有信息的提示。视频中还提到了三种类型的大型语言模型:通用语言模型、指令调整模型和对话调整模型。每种模型都需要以不同的方式进行提示。

封面图片

教你从零开始构建类似 ChatGPT 的大语言模型。

教你从零开始构建类似 ChatGPT 的大语言模型。 在 GitHub 上发现一本《Build a Large Language Model (From Scratch)》书籍。 作者将带你从头开始构建一个类似 GPT 语言模型,这过程让你了解如何创建、训练和微调大型语言模型 (LLMs)! 书籍主要分为 8 大章节,如下: 第 1 章:了解大语言模型(LLM)解析 第 2 章:介绍文本数据处理技巧 第 3 章:通过编程实现注意力机制(Attention Mechanisms) 第 4 章:从零开始实现类似 GPT 模型 第 5 章:对未标注数据进行预训练 第 6 章:针对文本分类的模型微调 第 7 章:结合人类反馈进行模型微调 第 8 章:在实践中使用大语言模型 书籍前两章内容已出,剩下的会逐步放出。 |

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人