完犊子!研究表明,阿联酋的蚊子对杀虫剂产生抗药性

完犊子!研究表明,阿联酋的蚊子对杀虫剂产生抗药性 据阿联酋大学的研究人员称,阿联酋的蚊子正在对一种关键杀虫剂产生抗药性。 这项发表在《自然科学报告》上的研究由阿联酋大学资助,并与阿布扎比公共卫生中心合作进行。研究结果表明,蚊子正在对一种名为溴氰菊酯的杀虫剂产生免疫作用。 这项研究由包括研究生 Amgd Sayed Ali 在内的研究人员进行,并由该大学生物系昆虫学教授 Mohammad Al Deeb 负责协调,研究内容包括在实验室中收集蚊子卵和饲养蚊子。从 174 只成蚊身上提取并分析了 DNA。

相关推荐

封面图片

红色网状温室背后的科学:生态友好型农业的新曙光

红色网状温室背后的科学:生态友好型农业的新曙光 虫害是所有园艺家的噩梦。新芽刚长出来,就会被蚜虫、甲虫和其他虫子入侵,成为它们的美味点心。虽然合成杀虫剂被广泛用于控制花园和农作物上的害虫,但许多杀虫剂会渗入土壤和水源,毒害植物、野生动物和无害昆虫,从而对自然环境造成破坏。一些害虫还对化学品产生了抗药性,因此,农民在使用杀虫剂时已无从选择,而且需要更频繁地使用。实验中使用的威尔士洋葱是一种名为 Kujo negi 的品种。这种洋葱是京都地区的传统蔬菜,也是当地烹饪的主食之一。图片来源:2024 Tokumaru 等人/科学报告农用网是保护作物和减少杀虫剂用量的另一种方法。当您经过果园或菜地时,可能会看到典型的白色、黑色或蓝色网状温室。就像蚊帐盖在床上一样,它们可以从物理上防止昆虫叮咬农作物。这些蚊帐最重要的特征是网孔的大小,孔越小,昆虫进入的空间就越小。然而,京都府农林水产中心和东京大学的一个研究小组发现,网的颜色可能是更重要的威慑因素。"我们测试了网眼尺寸比昆虫身体大的红网,但仍然比其他网眼尺寸较小的传统黑网或白网更有效。这种'光学害虫控制'依靠昆虫的色彩视觉特性来驱赶害虫,"东京大学农业与生命科学研究生院的下田雅美教授解释说。"大多数昆虫的眼睛里没有红色感光器,它们很难看到红色,因此我们对用一种看不见的颜色来控制昆虫感到很好奇"。蓟马通过破坏叶片和传播病害,对多种重要作物(包括威尔士洋葱、卷心菜、马铃薯、甜瓜、南瓜、草莓、棉花等)造成严重破坏。图片来源:2024 Tokumaru 等人/科学报告研究小组重点研究了一种害虫 - 洋葱蓟马(Thrips tabaci)。这种昆虫对杀虫剂有很强的抗药性,通过蚕食农作物和传播有害病毒,对全球一系列重要农作物造成广泛破坏。研究人员测试了三种颜色组合的红网(红-白、红-黑和红-红)和三种网眼尺寸(2 毫米、1 毫米和 0.8 毫米)。他们还在实验室和野外测试了相同尺寸的典型黑网、白网和黑白组合网。总体而言,所有含有红色纤维的网在防止洋葱蓟马方面的效果都明显优于黑色或白色网。在第二次室外试验中,研究人员测试了红红网在不同覆盖度下的效果:无覆盖、全覆盖、仅顶部覆盖和仅侧面覆盖。由于该地区爆发了洋葱蓟马,因此使用了杀虫剂。全覆盖地块所需的杀虫剂量最少,生产的洋葱具有很高的商业价值。与完全覆盖的地块相比,只覆盖顶棚或侧面的地块需要额外施用一次杀虫剂。与完全覆盖的地块相比,红网地块总体上减少了 25-50%的杀虫剂用量。"这些新型红网比杀虫剂更昂贵,但却很经济,因为它们可以使用多年。它们还能非常有效地控制害虫,而不需要喷洒杀虫剂所涉及的所有工作,"下田说,"我的梦想是,将来我们能制造出看起来不是红色的红网至少在人眼里不是,但对害虫有同样的效果。希望这能降低生产成本,我们也能找到提高耐用性的方法。"研究人员测试了不同网的光谱反射率,即反射光的波长。波长超过 600 纳米(十亿分之一米)时,我们看到的颜色是橙色到红色。由于红色网的光谱反射率较高,研究小组考虑,对洋葱蓟马的威慑作用是否可能是由于这些较长的波长刺激了昆虫眼睛中的某些受体。图片来源:2024 Tokumaru 等人/科学报告除了能减少洋葱蓟马的侵扰外,红网的另一个优点是,由于红网依靠的是颜色而不是网眼大小,因此可以有更大的孔。这样可以提高透气性,减少真菌感染的机会,并改善阳光的照射。此外,由于空气流通更好,温室内的温度也不会太高,这让在温室内工作的农民更轻松。下田说:"如果消费者对这种减少使用化学农药的可持续农业感兴趣,我毫不怀疑这种简单而有效的解决方案会得到广泛推广。我的家族自江户时代(17世纪)起就是全职农民,我自己也喜欢小规模种植蔬菜和水果,尽管虫害会给种植带来挑战。自己种植蔬果并吃上新鲜的蔬果是非常值得的。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研究表明宠物狗或猫可能正在传播致命的超级细菌

新研究表明宠物狗或猫可能正在传播致命的超级细菌 将于 4 月 27 日至 4 月 30 日在西班牙巴塞罗那举行的 ESCMID 全球大会上公布的最新研究表明,宠物狗和宠物猫在很大程度上助长了耐抗生素细菌的传播。研究发现,在葡萄牙和英国,患病猫狗和它们健康的主人之间存在耐多药细菌传播的证据,这引发了人们对宠物可能成为耐药性贮藏库,从而助长对重要药物的耐药性传播的担忧。全世界的抗生素耐药性正达到危险的高水平。世界卫生组织(WHO)将抗生素耐药性列为人类面临的最大公共卫生威胁之一。里斯本大学兽医学院动物健康跨学科研究中心抗生素耐药性实验室的首席研究员朱莉安娜-梅内塞斯(Juliana Menezes)说:"最新研究表明,抗菌药耐药性(AMR)细菌在人类和动物(包括宠物)之间的传播对维持耐药性水平至关重要,这对传统观念提出了挑战,即人类是社区中AMR细菌的主要携带者。了解并解决AMR细菌从宠物向人类传播的问题,对于有效对抗人类和动物群体的抗菌药耐药性至关重要"。梅内塞斯女士及其同事对猫狗及其主人的粪便和尿液样本以及皮肤拭子进行了检测,以确定是否存在对普通抗生素耐药的肠杆菌(包括大肠杆菌和肺炎克雷伯菌在内的一大类细菌)。他们重点研究了对第三代头孢菌素(用于治疗脑膜炎、肺炎和败血症等多种疾病,被世界卫生组织列为人类医学最重要的抗生素之一)和碳青霉烯类(其他抗生素失效时的最后一道防线)产生抗药性的细菌。这项前瞻性纵向研究涉及葡萄牙 43 个家庭的 5 只猫、38 只狗和 78 个人,以及英国 22 个家庭的 22 只狗和 56 个人。所有人类都很健康,所有宠物都患有皮肤和软组织感染 (SSTI) 或尿路感染 (UTI)。宠物与人类之间传播的证据在葡萄牙,有一只狗(1/43,2.3%)感染了产生 OXA-181 的耐多药大肠埃希菌菌株。OXA-181 是一种对碳青霉烯类产生抗药性的酶。3 只猫、21 只狗(24/43 只宠物,55.8%)和 28 位饲主(28/78 位饲主,35.9%)携带了产生 ESBL/Amp-C 的肠杆菌。这些细菌对第三代头孢菌素具有耐药性。在五户家庭中,一户养猫,四户养狗,宠物和主人都携带了产生 ESBL/AmpC 的细菌。基因分析表明菌株相同,表明细菌在宠物和主人之间传播。在这五个家庭中,有一个家庭的狗和主人也带有相同的抗生素耐药肺炎克雷伯菌株。在英国,有一只狗(1/22 只宠物,14.3%)被两株产生 NDM-5 β-内酰胺酶的耐多药大肠杆菌感染。这些大肠杆菌对第三代头孢菌素、碳青霉烯类和其他几类抗生素具有耐药性。从 8 只狗(8/22 只宠物,36.4%)和 3 位主人(3/24 位主人,12.5%)身上分离出了产 ESBL/AmpC 的肠杆菌。在两个家庭中,狗和主人都携带了同样的 ESBL/AmpC 产菌。然而,在葡萄牙的三个家庭中,ESBL/AmpC 产细菌检测呈阳性的时间强烈表明,至少在这些情况下,细菌是由宠物(两只狗和一只猫)传染给人的。建议和结论梅内泽斯说:"我们的发现强调了将饲养宠物的家庭纳入监测抗生素耐药性水平的国家计划的重要性。更多地了解宠物的抗药性将有助于制定知情的、有针对性的干预措施,以保障动物和人类的健康。"人与宠物之间可以通过抚摸、接触或亲吻以及处理粪便来传播细菌。为防止传播,研究人员建议主人养成良好的卫生习惯,包括在抚摸猫狗和处理其排泄物后洗手。当饲养的宠物不舒服时,可以考虑将它们隔离在一个房间里,以防止细菌在整个房子里传播,并彻底清洁其他房间。实验中所有猫狗的感染都得到了成功治疗,猫狗的主人没有发生感染,因此不需要治疗。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用 来自韦尔科姆-桑格研究所、奥斯陆大学、剑桥大学及其合作者的研究人员对细菌进行了一次高分辨率基因比较。他们将 700 多份新的血液样本与近 5000 份先前测序过的细菌样本进行了比较,以回答哪些因素会影响耐抗生素大肠杆菌(E. coli)的传播。最近发表在《柳叶刀微生物》(Lancet Microbe)杂志上的这项研究表明,在某些情况下,抗生素使用量的增加确实会导致耐药细菌的增加。不过,研究人员证实,这取决于所使用的广谱抗生素的类型。他们还发现,抗生素耐药基因的成功取决于携带这些基因的细菌的基因构成。认识抗生素耐药性背后的所有主要因素有助于更深入地了解这些细菌是如何传播的,以及是什么阻碍了它们的传播。这样就能更好地为公共卫生干预措施提供信息,利用完整的环境视角来帮助阻止耐药性感染的传播。大肠杆菌是全球血液感染的常见原因。造成这些感染的大肠杆菌通常存在于肠道中,不会造成危害。但是,如果由于免疫系统衰弱而进入血液,就会造成严重的感染,危及生命。对于医疗服务提供者来说,抗生素耐药性,尤其是多重耐药性(MDR),已成为此类感染的一个常见特征。在英国,超过 40% 的大肠杆菌血流感染对医院用于治疗严重感染的一种主要抗生素产生了耐药性。抗生素的使用和抗药性的变化全球大肠杆菌的抗生素耐药性比率各不相同。例如,对一种常用于治疗由大肠杆菌引起的尿路感染的抗生素的耐药率,因国家而异,从 8.4% 到 92.9% 不等。几十年来,抗生素耐药性一直是一个研究课题,以往研究的监测数据一直表明,抗生素的使用与包括英国在内的全球细菌耐药率增加之间存在关联。以往的研究表明,耐药和非耐药大肠杆菌菌株稳定共存,在某些情况下,非耐药细菌更容易成功。然而,由于缺乏无偏见的大规模纵向数据集,以前无法评估基因驱动因素在其中所起的作用。韦尔科姆-桑格研究所、奥斯陆大学及其合作者的这项新研究首次直接比较了挪威和英国两个国家不同大肠杆菌菌株的成功率,并根据全国范围内的抗生素使用水平解释了差异。特定国家的抗生素耐药性通过分析近20年的数据,他们发现抗生素的使用在某些情况下与抗药性的增加有关,这取决于抗生素的种类。其中一类抗生素,即非青霉素类β-内酰胺类抗生素,在英国的平均人均使用量是挪威的三到五倍。这导致了某种具有多重耐药性的大肠杆菌菌株的感染率升高。不过,英国使用抗生素三甲氧苄氨嘧啶的频率也更高,但在比较两国常见的大肠杆菌菌株时,分析并未发现英国的抗药性水平更高。研究发现,MDR 细菌的存活取决于周围环境中存在哪些大肠杆菌菌株。由于这种情况以及一个地区的其他选择性压力,研究人员得出结论,不能认为广泛使用一种抗生素会对在不同国家传播的耐抗生素细菌产生同样的影响。持续研究的重要性科学家们强调,他们的研究结果需要持续的研究努力,以确定大肠杆菌和其他临床重要细菌在各种生态环境中传播的其他驱动因素。要想充分了解抗生素、旅行、食品生产系统和其他因素对一个国家耐药性水平的综合影响,还需要进一步的研究。了解更多能够战胜抗生素耐药性大肠杆菌的菌株,有助于找到阻止其传播的新方法。例如,尝试增加某一地区非抗药性、无害细菌的数量。第一作者之一、挪威奥斯陆大学安娜-波蒂宁(Anna Pöntinen)博士是威康-桑格研究所(Wellcome Sanger Institute)的访问科学家:"我们的大规模研究使我们能够开始回答一些长期存在的问题,即是什么原因导致人群中出现耐多药细菌。这项研究之所以能够完成,是因为英国和挪威对细菌病原体进行了全国性的系统监测。如果没有这样的系统,科学家们利用基因组学的力量所能了解到的东西就会受到很大的限制"。剑桥大学的合著者朱利安-帕克希尔(Julian Parkhill)教授说:"我们的研究表明,抗生素是抗生素耐药大肠杆菌成功的调节因素,而不是唯一原因。我们的研究追踪了几种不同广谱抗生素的影响,结果表明这些抗生素的影响因国家和地区而异。总之,我们的综合基因分析表明,在不了解该环境中细菌菌株的基因构成的情况下,并不总是能够预测抗生素的使用会对一个地区产生怎样的影响。"该研究的资深作者、威康桑格研究所(Wellcome Sanger Institute)和挪威奥斯陆大学的尤卡-科兰德(Jukka Corander)教授说:"耐药性大肠杆菌是一个重大的全球公共卫生问题。长期以来,人们一直认为过度使用抗生素是导致超级细菌增多和传播的原因之一,而我们的研究则强调,广泛存在的大肠杆菌菌株的耐药性水平可能有很大差异。抗生素的使用将是一种选择性压力,而我们的研究表明,这并不是影响这些细菌成功的唯一因素。如果我们要控制超级细菌的传播,继续利用基因组学来详细了解细菌成功的内在驱动因素至关重要"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

日本研究员发现蚊子对血液成分作出反应而停止吸血

日本研究员发现蚊子对血液成分作出反应而停止吸血 日本理化学研究所高级研究员佐久间知佐子等人研究发现,当蚊子吸食人类和其他动物的血液时,会对一种由血液成分形成的物质作出反应,从而停止吸血。研究团队认为动物血液中存在可阻止蚊子吸血的物质,使用分布在热带地区等的埃及伊蚊进行了研究。结果发现,蚊子因对血液凝固时产生的一种物质“纤维蛋白肽A (FPA)”作出反应而停止了吸血。如果能够弄清蚊子对这种物质做出反应的详细原理,将有助于开发出阻止其吸血行为的方法。

封面图片

在埃塞俄比亚新发现的疟疾寄生虫学会了逃避检测和治疗

在埃塞俄比亚新发现的疟疾寄生虫学会了逃避检测和治疗 作者在《自然-微生物学》(Nature Microbiology)杂志上详细介绍了他们的基因组监测研究结果。科学家们已经在乌干达、坦桑尼亚和卢旺达发现了对大多数现有抗疟药物有抗药性的疟疾寄生虫菌株;另外,非洲之角也出现了对诊断测试有抗药性的疟疾寄生虫。研究报告的作者、布朗大学转化研究和病理学与实验室医学副教授杰弗里-贝利(Jeffrey Bailey)说,这些寄生虫一直在相互独立地传播,但这项新研究是首次发表的报告,证实了这种双重抗性疟疾菌株的普遍性。贝利说:"现在,我们基本上看到了最坏的情况:寄生虫发生了突变,使它们对治疗产生了抗药性,同时也发生了染色体缺失,使它们无法被诊断检测到。这意味着将更难检测出受感染的人,然后当受感染的人接受抗疟药物治疗时,可能无法阻止他们传播疾病。"诊断难题和治疗阻力在非洲,诊断疟疾的标准方法是通过快速诊断检测,检测血液中高度表达的特定寄生虫蛋白。即使病人没有症状,这种检测也能确诊疟疾。缺乏这些蛋白质基因的寄生虫已经进化到检测不到的程度。世界卫生组织推荐的一线疟疾治疗方法是青蒿素类复方药物联合疗法,这种疗法在预防死亡和减少传播方面非常有效。目前在非洲发现的变异对青蒿素产生了抗药性。贝利在布朗大学的研究小组与埃塞俄比亚公共卫生研究所(Ethiopian Public Health Institute)和北卡罗来纳大学教堂山分校(University of North Carolina at Chapel Hill)的研究人员密切合作,对埃塞俄比亚三个地区收集到的带有被删除的蛋白表达基因的疟疾寄生虫样本进行了基因组比较分析。在布朗计算分子生物学中心(Center for Computational Molecular Biology)博士项目联合主任贝利(Bailey)的领导下,科学家们利用分子测序技术评估了青蒿素抗药性突变的普遍性。贝利实验室的博士后研究员阿贝贝-福拉(Abebe Fola)在这项工作中发挥了重要作用,他也是论文的第一作者。研究结果和埃塞俄比亚的疟疾流行率他们发现,8.2%的抗药性寄生虫也携带有蛋白质表达基因的缺失,而这种缺失使它们能够被诊断测试检测到。在埃塞俄比亚,疟疾的总体发病率较低,但在该国 75% 的地区仍有流行,65% 的人口面临风险。每年疟疾发病超过 500 万次。埃塞俄比亚政府制定了到 2030 年消灭疟疾的目标,而及时诊断和使用有效药物治疗是消灭疟疾计划的基石。贝利说:"这些寄生虫的传播肯定会增加在埃塞俄比亚和非洲其他地区消灭疟疾的难度,并可能导致病例和死亡人数的增加。"科学家们总结说,需要密切监测抗药性和抗诊断性结合寄生虫的传播,并指出,更好地了解这些变异是如何出现、相互作用和传播的,对于未来在非洲成功控制和消灭疟疾的努力至关重要。此外,贝利说,除青蒿素外,还迫切需要开发治疗疟疾的新疗法以及预防和减缓疾病传播的疫苗。过去十年来,随着新一代测序技术的出现和完善,进行基因组监测以监控突变同时寻找新突变的能力大大提高。他在布朗大学的实验室率先采用高通量技术同时对许多基因进行测序,并与其他大学的研究团队以及乌干达等国的卫生机构合作开展类似本研究的项目。虽然这项研究的分析工作是在布朗大学进行的,但贝利和研究小组的其他成员正致力于在埃塞俄比亚和非洲其他地区建立基因组监测能力。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国研究人员的最新进展为研制抗超级细菌抗生素创造了条件

中国研究人员的最新进展为研制抗超级细菌抗生素创造了条件 对多种药物产生抗药性的细菌感染是一项重大的世界性挑战,现有的抗生素都无法治疗这种感染。来自中国的一个研究小组在《展望化学》(Angewandte Chemie)杂志上发表了一种创新抗生素的新策略,旨在抗击这些耐药细菌。这种方法利用蛋白质成分与荧光脂链相结合来开发药物。抗生素的处方往往过于随意。在许多国家,抗生素不经处方就被分发,并在工厂化养殖中使用:预防感染和提高性能。因此,抗药性在不断增加,对储备抗生素的抗药性也在增加。开发创新型替代品至关重要。我们可以从微生物本身吸取一些教训。脂蛋白是带有脂肪酸链的小分子蛋白质,细菌在与微生物竞争者的斗争中广泛使用这种蛋白质。许多脂蛋白已被批准用作药物。活性脂蛋白的共同点包括带正电荷和两亲结构,即它们有排斥脂肪的部分,也有排斥水的部分。这使它们能够与细菌膜结合,并穿透细菌膜进入内部。上海华东师范大学程义云领导的研究小组旨在通过用氟原子取代脂链中的氢原子来放大这种效应。这使得脂链同时具有憎水性(疏水性)和憎脂性(疏脂性)。它们特别低的表面能加强了与细胞膜的结合,而它们的疏脂性则破坏了膜的内聚力。研究小组利用氟化碳氢化合物和肽链合成了一个氟化脂肽谱系(物质库)。为了将两部分连接起来,他们使用了氨基酸半胱氨酸,通过二硫桥将它们结合在一起。研究人员通过测试这些分子对耐甲氧西林金黄色葡萄球菌(MRSA)的活性,对这些分子进行了筛选。MRSA 是一种广泛存在的高危菌株,几乎对所有抗生素都有抗药性。他们发现最有效的化合物是"R6F",这是一种由六个精氨酸单位和由八个碳原子和十三个氟原子组成的脂质链构成的多氟脂肪肽。为了提高生物相容性,R6F 被包裹在磷脂纳米颗粒中。在小鼠模型中,R6F 纳米粒子对 MRSA 引起的败血症和慢性伤口感染非常有效。没有观察到任何毒副作用。纳米粒子似乎以多种方式攻击细菌:它们抑制重要细胞壁成分的合成,促进细胞壁的崩溃;它们还刺穿细胞膜并破坏其稳定性;破坏呼吸链和新陈代谢;增加氧化应激,同时破坏细菌的抗氧化防御系统。这些作用结合在一起,就能杀死细菌其他细菌和 MRSA。似乎不会产生抗药性。这些见解为开发治疗多重耐药细菌的高效荧光多肽药物提供了起点。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人