Q2:请总结这篇论文的核心要点, 尽量以中学生能读懂的非技术语言和风格。我们一条条慢慢展开,尽量站在科普和面向非专业人士的立场。
Q2:请总结这篇论文的核心要点, 尽量以中学生能读懂的非技术语言和风格。我们一条条慢慢展开,尽量站在科普和面向非专业人士的立场。首先,请你站在非游戏玩家立场上, 简单介绍下Minecraft 这个沙盒游戏?为Voyager这样的自组织学习的智能代理有什么独特的环境属性? Q3:我的理解是,「迭代提示机制」作为第一个核心要素, 是Voyager 自组织探索的关键。 当VOYAGER 需要完成一个任务时,它会先通过大语言模型生成一段代码;然后根据执行这段代码产生的环境反馈、执行错误和自我验证;不断改进这段代码,直到完成任务要求;得到成功的代码就会加入技能库。 能否针对《我的世界》这款游戏玩家的视角, 给出一些具体的任务和例子, Voyager是如何执行这条机制和系统的呢? 例子不要3个,可以从简单到复杂, 尽量包含与环境的互动和反馈等关键描述。 注意保持非技术人士的视角。(见图4) Q4:很有趣,以中等难度的「制作铁制工具」任务为例, VOYAGER会如何自组织设计prompts来实现 GPT-4的编码呢? 具体有哪些环境属性的信息,让 AI 模型能够「看见」和得到反馈信息?(图 5) Q5:看起来这些 prompts 的方式相当开发者级别呢? 不仅包含了包含环境和实体的属性信息,还让游戏的 API 模拟了游戏操作。 那么,如何解决GPT-4 编写代码出现 bug,病自动修复的问题呢?(图 6) Q6:除了自我修复 bug,还有「自动课程」机制会触发, 提供另外一些新的任务目标。 那么, 请用最朴实、简明的语言,介绍一下「自动课程」的基本原理,并介绍 3 个场景案例,来探讨它是如何给 AI 智能代理提供新任务的流程?( 图 7) Q7:我举一个更具体玩游戏场景的例子:例如 AI 智能代理,发现自己在沙漠而不是森林中,它会如何调整它当前的任务(制作铁锹的材料在当前环境缺失)? Q8:Voyager通过将成功的程序存储在一个矢量数据库中,逐步建立起一个技能库。每个程序都可以通过其文件串的嵌入来检索。复杂的技能是由较简单的技能合成的,这使Voyager的能力随着时间的推移而不断增强。 Q9:论文中提到,顶部:添加新技能。每个技能都通过嵌入其描述来索引,可以在将来的类似情况下检索。
在Telegram中查看相关推荐

🔍 发送关键词来寻找群组、频道或视频。
启动SOSO机器人