一个懒人 LoRA 制作指南,手把手教你用 OneTrainer 训练自己的 AI 绘画模型,无需深入理论,轻松掌握关键步骤。

一个懒人 LoRA 制作指南,手把手教你用 OneTrainer 训练自己的 AI 绘画模型,无需深入理论,轻松掌握关键步骤。 作者是用XL生成的图片,你可以用MIdjoureny生成效果比较好。 我完整翻译了内容,并且重新整理了适合推特阅读的版本,或者你可以在下面看完整翻译的内容: - 1⃣ LoRA 模型制作教程 作者作为一名 LoRA 模型制作的新手,通过自己的学习实践,总结了一份简明扼要的制作教程。 这份教程不涉及太多理论知识,而是直奔主题,手把手教初学者如何训练自己的 LoRA 模型。 作者坦诚分享了自己从最初尝试 Embedding 和 LoRA 时遇到的问题,以及后来找到的解决方法,为读者提供了宝贵的经验参考。 所需工具介绍 要制作 LoRA 模型,需要准备一些必要的工具。作者推荐使用自己喜欢的模型和图像生成工具,他个人使用的是 StableSwarmUI 和 GhostXL 模型。 此外,还需要一个训练工具,作者选择了 OneTrainer,因为有人说它比另一个常用的工具 Kohya 更易用。作者还提到,训练时如果需要将 SDXL 格式的图像转换为 SD 格式,需要在设置中开启分辨率覆盖选项。 2⃣ LoRA 模型制作步骤 作者将 LoRA 模型的制作过程分为三个主要步骤: 第一步是用现有的模型生成大量高质量的图像作为训练数据; 第二步是人工检查挑选图像,剔除所有质量不合格的; 第三步是使用 OneTrainer 进行训练,调整必要的参数设置。 作者还特别提到,在训练时如果需要将 SDXL 格式的图像转换为 SD 格式,一定要记得开启分辨率覆盖选项,否则训练会出问题。 训练参数调整心得 作为一名新手,作者在调整训练参数时主要参考了一份网上的指南。 他尝试调整了 Lora 设置中的 rank 参数,将其从默认的 16 改为 32,解决了模型训练中遇到的问题。作者分享了这份参数调整指南的链接,供其他学习者参考。 3⃣ 作者的训练数据集分享 为了帮助更多学习者,作者慷慨地分享了自己完整的训练图像数据集,其中还包含了他使用的 OneTrainer 配置文件。这些数据可供其他 LoRA 制作人下载参考和使用。数据集已经过作者的筛选,图像质量有保证。 4⃣ 训练成果展示

相关推荐

封面图片

作者展示了几张用自己训练好的 LoRA 模型生成的图像作为成果展示。这些图像的质量相当不错,证明作者的训练过程是成功的。作者表示

作者展示了几张用自己训练好的 LoRA 模型生成的图像作为成果展示。这些图像的质量相当不错,证明作者的训练过程是成功的。作者表示,训练好的模型可以根据输入的提示词和参数,生成特定风格和效果的图像。 完整教程:

封面图片

微软这个研究相当强啊,可以不经过训练直接融合多个 Lora 不损失效果,而且他们提出的通过 GPT-4V 评价图像质量的方法也很

微软这个研究相当强啊,可以不经过训练直接融合多个 Lora 不损失效果,而且他们提出的通过 GPT-4V 评价图像质量的方法也很有参考性。 项目介绍: 本项目旨在通过新的文本至图像生成方法,着重采用多重低秩适应(Low-Rank Adaptations, LoRAs)技术,创造高度个性化且细节丰富的图像。我们介绍了LoRA开关(LoRA Switch)与LoRA组合(LoRA Composite),这两种方式的目标是在精确度和图像质量上超越传统技术,特别是在处理复杂图像组合时。 项目特色: 免训练方法 LoRA开关和LoRA组合支持动态精确地整合多个LoRA,无需进行微调。 我们的方法不同于那些融合LoRA权重的做法,而是专注于解码过程,并保持所有LoRA权重不变。 ComposLoRA测试平台 这是一个全新的综合性测试平台,包含480套组合和22个在六大类别中预训练好的LoRA。 ComposLoRA专为评估基于LoRA的可组合图像生成任务而设计,支持定量评估。 基于GPT-4V的评估工具 我们提出采用GPT-4V作为评估工具,用以判定组合效果及图像质量。 该评估工具已证实在与人类评价的相关性上有更好的表现。 卓越性能 无论是自动化还是人类评价,我们的方法都显著优于现有的LoRA合并技术。 在生成复杂图像组合的场景中,我们的方法表现出更加突出的优势。 详尽分析 我们对每种方法在不同场景下的优势进行了深入的分析。 同时,我们还探讨了采用GPT-4V作为评估工具可能存在的偏差。 项目地址:

封面图片

《如何改变习惯:手把手教你用30天计划法改变95的习惯》

《如何改变习惯:手把手教你用30天计划法改变95的习惯》 简介:本书提供了关于如何改变习惯:手把手教你用30天计划法改变95的习惯的深度解析,涵盖其发展背景、核心概念以及实际应用。通过真实案例与科学研究,帮助读者理解其重要性,并掌握相关技能或知识点。适合对该主题感兴趣的读者,让你在短时间内提升认知,拓宽思维边界。 标签:#如#如何改变#知识#学习 文件大小:NG 链接:

封面图片

最近和朋友七黔在琢磨基于 SDXL 训练的 AI 美甲工具,有两件让我特别兴奋的事情!

最近和朋友七黔在琢磨基于 SDXL 训练的 AI 美甲工具,有两件让我特别兴奋的事情! 第一是,除了穿戴甲 LoRA在 SDXL 上训练效果比1.5好了特别多以外,还可以通过训练 LoRA 直接实现美甲上手效果!!! 另一个是可以通过最新的 ControlNet 模型 IP-Adapter 根据参考图直接提取图像设计出美甲款式,这一点也太有想象空间了。 我们把 demo 部署了一下,如果感兴趣可以试试看: #AI工作流

封面图片

答应大家的AI歌手教程来了,手把手教你训练你自己的AI歌手,主要分为使用模型和训练模型两部分,这里是第一部分如何使用模型生成音乐

答应大家的AI歌手教程来了,手把手教你训练你自己的AI歌手,主要分为使用模型和训练模型两部分,这里是第一部分如何使用模型生成音乐的部分,主要介绍了音源的处理,模型的使用和后期音轨的合成。 看在藏师傅生病肝教程的份上希望各位多多支持,下面是具体步骤,图片顺序跟文字顺序对应 详细教程和文件下载可以看这里: 要使用模型进行推理的话你首先需要一段已经演唱好的声音垫进去,所以我们需要先对你垫进去的声音进行处理。 首先要安装UVR_v5.5.0,完成后我们需要给UVR增加一个模型解压UVR5模型文件将里面的两个文件夹粘贴到安装目录下的Ultimate Vocal Removermodels就行。 在处理之前你需要把你声音的格式转换成WAV格式,因为So-VITS-SVC 4.0只认WAV格式的音频文件,现在处理了后面会省事点。可以用这个工具处理:https:// 处理完音频文件后我们就要开始利用UVR去掉背景音了,一共需要过两次,每次的设置都是不同的,下面两张图分别是两次的参数。 接下来我们就要运行整合包的Web UI来推理声音了,如果你用的其他人的模型的话你需要先把模型文件放进整合包对应的文件夹下面: 首先是模型文件夹下面后缀为pth和pt的两个文件放到整合包的logs44k文件夹下。 之后是模型文件里那个叫config.json的json文件,放到整合包的configs文件夹下面。 接下来我们就可以运行整合包的Web UI了,打开整合包根目录下的【启动webui.bat】这个文件他会自动运行并打开Web UI的网页,经常玩Stable Diffusion的朋友肯定对这个操作不陌生。 下面就是Web UI的界面我们使用模型的时候主要用的是推理这个功能。 之后就是选择我们的模型,如果你刚才已经把模型放到合适的位置的话你现在应该能在下图的两个位置选择到你的模型和配置文件,如果有报错会在输出信息的位置显示。 选择完模型之后我们需要点击加载模型,等待一段时间Loading之后模型会加载完成。Output Message这里会输出加载的结果。之后就是上传我们处理好的需要垫的音频文件了,把文件拖动到红框位置就行。

封面图片

总结一下我自己在做模型训练时关注到的一些很喜欢的 AI 前沿探索者,以及工具和资源。

总结一下我自己在做模型训练时关注到的一些很喜欢的 AI 前沿探索者,以及工具和资源。 1. Stable Diffusion 入门推荐: 腾讯技术工程《开源图像模型Stable Diffusion入门手册》 推荐理由:目前总结的最好的,没有花里胡哨的内容,信息量大且系统,很难相信是直接开源的文章分享,反复读的文章之一了。 2. LoRA 角色模型训练: YouTube 频道 @Bernard Maltais 推荐理由:Kohya 训练脚本的作者,上下两集共90分钟讲解了 Lora 模型的训练,从数据集收集到处理到训练参数。建议这种教程能看开发者做的就看开发者做的,很多追热点的 up 经常为了图快没玩明白就出攻略,我跟着很多油管的教程操作,常被带进坑里…… 3. 微调风格模型训练: Twitter @Nitrosocke 推荐理由:Nitro 训练过很多非常棒的模型,他的 GitHub 页面有详细讲风格模型怎么训练的教程。他自己本身是设计师出身,在去年年底微调了几个很厉害的风格模型后,现在被 StabilityAI 挖走了。 4. ControlNet 插件研发用户推荐 Twitter @toyxyz 推荐理由:他做了利用 Blender 来辅助 AI 出图的免费插件,打通工作流 3D 辅助 AI 的第一人哈哈。最近他在研究的方向是 ControlNet 动画,总之是厉害、前沿又无私的开发者。 5. AI 放大工具推荐 Topaz Gigapixel:用过最好用的,可以批量放大,基本所有图片训练前我都会用这个过一遍 Upscayl:会增加细节,但是只能给常见物体增加细节 Gigagan:还没出,但看效果挺值得关注 #AI工作流 #AI的神奇用法

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人