手把手教你训练你自己的AI歌手,最重要的一步来了。如何训练歌手的模型。这一步主要由两部分组成数据处理和模型训练。
手把手教你训练你自己的AI歌手,最重要的一步来了。如何训练歌手的模型。这一步主要由两部分组成数据处理和模型训练。
感谢各位的支持,下面是具体步骤
详细教程和文件下载可以看这里:
首先我们需要准备你训练的人的声音素材,尽量找质量比较高人声比较清晰的音频。
歌手的声音素材是比较好找的,因为他们的歌就是天然的素材,我们在训练的时候最少要准备30分钟以上的人声素材,一般一个小时到两个小时最好。但是声音的质量大于时间长度,不要为了凑数搞一些质量不那么好的素材。
在准备好足够的声音素材之后我们开始对素材进行处理,跟第一期一样,先把我们的素材转换为WAV格式,批量转换的话还是用格式工厂之类的本地软件比较快。
获取到我们个WAV格式素材之后,继续进行跟上个教程一样的步骤利用UVR去掉我们素材的伴奏以及混响之类的声音,只留下单纯的人声。
处理完成后扔掉分离出来的伴奏,只留下人声素材,整理好备用。类似我下图这样扔到一个文件夹里。
接下来我们要对处理好的人声文件进行分割,因为如果训练的时候每段文件过长的话容易爆显存。
这个时候就要用到下载文件里的【slicer-gui】这个软件了,它可以自动把声音素材分割成合适的大小。我们先打开slicer-gui,刚开始的参数按我的来就行。
把你你准备好的人声素材拖到【Task List】里面,在Output位置设置好输出文件夹的位置,然后点Start就可以开始分割了。
处理好的文件,基本上就是下面这个文件的样子,处理完成后在输出文件夹把文件从大到小排序,看一下最大的文件时多长的,分割完的素材每一段尽量不要超过15秒。不然有可能会爆显存。
如果你发现有几条素材比较大的话可以拖进slicer-gui里面重新分割一下,参数按我下面图片设置就行。
所有数据处理好之后,我们准备开始训练了首先需要把准备好的素材移动到so-vits-svcdataset_raw这个文件夹下,注意不要直接把素材放在dataset_raw文件夹里,拿个文件夹装好放进去,所有的目录不要有中文字符。
我们开始模型训练,运行so-vits-svc根目录的【启动webui.bat】打开Web UI界面,切换到训练Tab下面。然后点击识别数据集,这时候上面就会展示你数据集文件夹的名字,也会是你模型的名字。