《傅里叶光学 》

《傅里叶光学 》 简介:这一学科结合傅里叶分析与波动光学原理,研究光场在空间频域的变换特性,用于分析光的传播、成像及衍射现象。其核心思想是将复杂光波分解为不同频率平面波的线性叠加,通过频谱处理实现光学系统的建模与优化,为现代光电技术提供理论支撑。 亮点:建立了光波与通信理论的桥梁,成为全息术、光学信息处理等技术的数学基础,并推动激光精密测量与显微成像的发展。其空间频谱分析方法革新了传统光学设计范式。 标签:#傅里叶变换 #波动光学 #空间频谱分析 #光学成像 #激光技术 链接:https://pan.quark.cn/s/c74afec37d34

相关推荐

封面图片

中国科学家研发出全球最薄光学晶体:转角菱方氮化硼

中国科学家研发出全球最薄光学晶体:转角菱方氮化硼 这是世界上已知最薄的光学晶体,能效相较于传统晶体提升了100至1万倍,为新一代激光技术奠定理论和材料基础。光学晶体可实现频率转换、参量放大、信号调制等功能,是激光技术的“心脏”,而激光技术是我们当前科技文明的基石,在微纳加工、量子光源、生物监测等领域大放光彩。据悉,集成化、微型化、多功能化是未来激光器的发展方向,但传统光学晶体很难在有限厚度内高效产出激光,因此制备更轻薄的光学晶体成为各国科学家竞相研发的焦点。“转角菱方氮化硼”的研发将极大地推动我国新一代集成化激光技术的发展,未来有望在光刻机等微纳加工设备上带来激光技术的新突破。目前,研究团队已与国内激光器公司合作,并成功研发了新一代的全光纤激光器,同时与用户单位合作,推进该技术在光学芯片、量子技术、航空航天特种用途等领域的研发应用。 ... PC版: 手机版:

封面图片

澳大本科生光学加密研究获光学顶级期刊刊登

澳大本科生光学加密研究获光学顶级期刊刊登 #澳门大学 澳门大学科技学院物理及化学系本科生刘亦辰与其导师刘宏超在应用物理及材料工程研究院的研究团队,提出了一种用于压缩计算鬼成像的探测信号和照明图案的方案,可提高图像信号加密的安全度,获光学类顶级期刊《光学快讯》刊登。 澳大物理及化学系本科课程的主要特色以“专题研习”的学习方式为主,在学生的课外学习中扮演著重要的角色。学生从大一开始加入教授的研究课题组进行科研学习和探索...

封面图片

一种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜观察

一种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜观察 圆环状光束从具有规则重复结构的物体上反弹产生的散射图案。资料来源:Wang 等人,2023 年,"Optica"(光学)。功能最强大的无透镜成像技术被称为"层析成像",其工作原理是用类似激光的光束扫描样品,收集散射光,然后利用计算机算法重建样品图像。虽然层析成像技术可以观察到许多纳米结构,但这种特殊的显微镜在分析具有非常规则的重复图案的样品时会遇到困难。这是因为在扫描周期性样品时,散射光不会发生变化,因此计算机算法会感到困惑,无法重建良好的图像。面对这一挑战,刚刚毕业的博士研究员王斌和内森-布鲁克斯与 JILA 研究员 Margaret Murnane 和 Henry Kapteyn 合作,开发出一种新方法,利用具有特殊涡旋或甜甜圈形状的短波长光来扫描这些重复表面,从而产生更多不同的衍射图样。这使得研究人员能够利用这种新方法捕捉到高保真的图像重建,他们最近在《光学》(Optica)杂志上发表了这篇论文。这项成果还将在《Optica》杂志的《光学与光子学新闻》(Opticsand Photonics News)2023 年光学 年度要闻中重点介绍。这种新的成像方法对于纳米电子学、光子学和超材料的应用尤其具有影响力。Murnane 解释说:"将可见激光束结构化(或改变其形状)为甜甜圈和其他形状的能力彻底改变了可见光超分辨率显微镜技术。现在,我们有了将这些强大功能应用到更短波长的途径,这非常令人兴奋"。雕刻涡形高次谐波束为了在台式装置中产生类似激光的短波长光束,JILA 小组使用了一种称为高次谐波发生(HHG)的过程。当超高速激光脉冲击中一个原子时,高次谐波发生器会将一个电子拉走,然后将其驱回母体原子重新结合。原子在接触时,会将电子的动能转化为极紫外(EUV)光。如果数以百万计的原子都同步发出极紫外光,那么这些光波就会产生类似激光的明亮极紫外光束。为了给重复图案成像,JILA 的研究人员需要找到一种改变 HHG 光束的方法,这样当 EUV 光束在样品上扫描时,散射光就会发生变化。为了达到这一效果,研究人员将 HHG 光束从圆盘状转变为涡旋状或甜甜圈状,这就是所谓的轨道角动量(OAM)光束。这种不同的形状对于实现周期性样品的无透镜成像至关重要。当科学家们用漩涡状的 HHG 光束照射显微镜时(见附图),会产生更复杂的散射图案,这些图案会随着样品的扫描而变化。这些变化编码了样品重复图案的信息,使算法能够提取精确的图像。除了这一令人兴奋的结果之外,与扫描电子显微镜相比,这种新型涡流束无透镜成像技术对脆弱样品的损伤也更小。由于许多软性材料、塑料和生物样本都很脆弱,因此有一种精确而温和的方法来对它们进行成像是非常关键的。此外,涡流束无透镜成像比扫描电子显微镜更能检测出纳米图案中的缺陷,因为扫描电子显微镜往往会融化脆弱的样品。对于为下一代纳米、能源、光子和量子设备制造图案化材料的科学家来说,这一进步能够在不破坏高周期结构的情况下对其进行高分辨率成像。正如 Kapteyn 所说:"未来,这也有可能以高空间分辨率对微妙的活细胞进行成像"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

新型二维材料可以以惊人的精度改善先进系统和通信的光学调制

新型二维材料可以以惊人的精度改善先进系统和通信的光学调制 可调谐光学材料(TOMs)正在彻底改变现代光电子技术,即检测、产生和控制光的电子设备。在集成光子电路中,精确控制材料的光学特性对于开启光操纵领域的突破性和多样化应用至关重要。二维材料,如过渡金属二卤化物(TMD)和石墨烯对外部刺激表现出非凡的光学响应。然而,如何在短波红外(SWIR)区域内实现独特的调制,同时在紧凑的空间内保持精确的相位控制和较低的信号损耗,一直是个难题。在发表于《自然-光科学与应用》(Nature Light Science & Application)的一篇题为"基于铁离子二维材料的复合硅光子学中的电光调谐"(Electro-Optic Tuning in Composite Silicon Photonics Based on Ferroionic 2D Materials)的新论文中,由研究科学家加达-杜沙克(Ghada Dushaq)和电气工程副教授兼PRL实验室主任马哈茂德-拉斯(Mahmoud Rasras)领导的科学家团队通过利用铁离子二维材料CuCrP2S6(CCPS),展示了一种主动光操纵的新途径。通过将首创的二维原子级薄材料集成到硅芯片上的微环结构中,该团队提高了设备的效率和紧凑性。当这些二维材料集成到硅光学器件上时,就会表现出一种非凡的能力,即在不产生任何衰减的情况下,对传输信号的光学特性进行精细调节。这种技术有望彻底改变环境传感、光学成像和神经形态计算等对光灵敏度要求极高的领域。Rasras 说:"这项创新可精确控制折射率,同时最大限度地减少光损耗,提高调制效率,并减少占地面积,使其适用于下一代光电子技术。从相控阵和光学开关到环境传感和计量、光学成像系统,以及光敏人工突触中的神经形态系统,都有一系列令人兴奋的潜在应用。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

大阪大学研究人员开发出柔韧可弯曲的光学传感器 揉成一团也能用

大阪大学研究人员开发出柔韧可弯曲的光学传感器 揉成一团也能用 在最近发表于《先进材料》(Advanced Materials)上的一项研究中,大阪大学科学与工业研究所(SANKEN)的研究人员在一种超薄柔性薄片上开发出了一种光学传感器,这种传感器可以弯曲而不会断裂。事实上,这种传感器非常灵活,即使被揉成一团也能正常工作。在照相机中,光学传感器是感应穿过镜头的光线的装置,类似于人眼的视网膜。传感器设计的创新"传统的光学传感器是使用无机半导体和铁电材料制造的,"该研究的主要作者 Rei Kawabata 说。"这使得传感器变得僵硬,无法弯曲。为了避免这个问题,我们研究了另一种探测光的方法。"与传统的光传感器不同,研究人员使用的是印在超薄聚合物基底(小于 5 微米)上的微小碳纳米管光电探测器阵列。当暴露在光线下时,碳纳米管会发热,形成热梯度,然后产生电压信号。在印刷过程中掺入化学载体可进一步提高纳米管的灵敏度。利用这些纳米管,可以测量可见光以及与热或分子有关的红外光。用于宽带红外热分析的集成有机电路的超灵活无线成像仪利用片状光学传感器对光、热和分子进行探测和成像。无线技术集成除了碳纳米管传感器,聚合物基板上还印有有机晶体管,将电压信号组织成图像信号。要读取这种信号,计算机不需要通过电线与传感器进行物理连接。取而代之的是一个无线蓝牙模块。该研究的资深作者荒木祯平说:"有了这套无线系统,我们的成像仪就能附着在柔软和弯曲的物体上,对其表面或内部进行分析,而不会损坏它们。"集成了碳纳米管光电探测器和有机晶体管的片式光学传感器研究人员制作了薄片型光学传感器的原型,并测试了其感应人体手指或电线等物体的热量以及流经管道的葡萄糖的能力。他们发现,这种光学传感器在很宽的波长范围内都具有很高的灵敏度。此外,在室温和大气条件下,测试表明它具有很高的弯曲耐久性,即使被揉皱也能正常工作。这种无线测量系统和薄片型光学传感器的独特优势将为执行许多任务(如无需采样即可评估液体质量)带来更简单的新方法。研究人员认为,它在无损成像、可穿戴设备和软机器人等许多应用领域都大有可为。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

革命性的元光学设备和尖端计算成像算法改变了热成像技术的运用

革命性的元光学设备和尖端计算成像算法改变了热成像技术的运用 "我们的方法克服了传统光谱热成像仪的难题,传统热成像仪由于依赖于大型滤光轮或干涉仪,通常都比较笨重和精密,"研究团队负责人、来自普渡大学的祖宾-雅各布(Zubin Jacob)说。"我们将元光学设备和尖端计算成像算法结合起来,创造出一种既紧凑又坚固,同时还具有大视场的系统。"在光学出版集团的高影响力研究期刊《光学》(Optica)上,作者介绍了他们的新型光谱偏振分解系统,该系统利用一叠旋转元表面将热光分解为光谱和偏振成分。这样,除了传统热成像技术获取的强度信息外,成像系统还能捕捉热辐射的光谱和偏振细节。研究人员的研究表明,新系统可与商用热像仪配合使用,成功地对各种材料进行分类,而这对于传统热像仪来说通常是一项具有挑战性的任务。这种方法能够根据光谱偏振特征区分温度变化和识别材料,有助于提高包括自动导航在内的各种应用的安全性和效率。旋转元表面堆栈可将热光分解为光谱和偏振成分。研究人员将元表面堆栈与传统的长波红外摄像机和计算成像算法相结合,创建了一个紧凑而强大的光谱热成像系统。本文第一作者、普渡大学博士后研究员王学吉说:"传统的自主导航方法主要依赖于 RGB 摄像机,而这种摄像机在光线不足或天气恶劣等恶劣条件下难以发挥作用。与热辅助探测和测距技术相结合,我们的光谱偏振热像仪可以在这些困难的情况下提供重要信息,比 RGB 或传统热像仪提供更清晰的图像。一旦我们实现了实时视频捕捉,该技术就能大大提高场景感知能力和整体安全性。"用更小的相机做更多的事情长波红外光谱偏振成像对于夜视、机器视觉、痕量气体传感和热成像等应用至关重要。然而,当今的光谱极坐标长波红外成像仪体积庞大,光谱分辨率和视场有限。为了克服这些限制,研究人员转向大面积元表面能以复杂方式操纵光线的超薄结构表面。在设计出具有定制红外响应的旋转色散元表面后,他们开发出了一种制造工艺,可以利用这些元表面制造出适合成像应用的大面积(直径 2.5 厘米)旋转设备。由此产生的旋转堆栈尺寸小于 10 x 10 x 10 厘米,可与传统红外摄像机配合使用。"将这些大面积元光学设备与计算成像算法相结合,有助于高效地重建热辐射光谱。这使得光谱极坐标热成像系统比以前的系统更加紧凑、坚固和有效"。利用热成像技术对材料进行分类为了评估他们的新系统,研究人员使用各种材料和微结构拼出了"普渡大学"字样,每种材料和微结构都具有独特的光谱极坐标特性。利用该系统获取的光谱极坐标信息,他们准确地区分了不同的材料和物体。他们还证明,与传统热成像方法相比,该系统的材料分类准确性提高了三倍,凸显了该系统的有效性和多功能性。研究人员说,这种新方法对于需要详细热成像的应用尤其有用。"例如,在安全领域,它可以通过检测隐藏在人身上的物品或物质来彻底改变机场系统,王学吉说。"此外,其紧凑坚固的设计增强了其在不同环境条件下的适用性,使其特别有利于自主导航等应用"。除了利用该系统实现视频捕捉之外,研究人员还在努力提高该技术的光谱分辨率、传输效率以及图像捕捉和处理速度。他们还计划改进元表面设计,以实现更复杂的光操作,从而获得更高的光谱分辨率。此外,他们还希望将该方法扩展到室温成像,因为元表面堆栈的使用限制了该方法对高温物体的应用。他们计划利用改进的材料、元表面设计和抗反射涂层等技术来实现这一目标。编译自/ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人