树上生树上长,龙眼树上的寄生植物,抱石莲。陆地版藤壶#解压视频

None

相关推荐

封面图片

抠藤壶#解压

封面图片

还有什么是中国人不吃的吗,寄生虫藤壶都是中华美食了

封面图片

By:6000#frth#视频解压抠藤壶#动物世界 #放松解压 #野生动物零距离

封面图片

By:6000#frth#视频.解压抠藤壶#动物世界#放松解压#野生动物零距离

封面图片

绿色祖先:科学家解密6亿年水生植物陆地化的过程

绿色祖先:科学家解密6亿年水生植物陆地化的过程地球的大部分陆地表面都生长着各种各样的植物,它们构成了陆地上生物量的绝大部分。从纤弱的苔藓到参天大树,植物种类繁多。这种令人惊叹的生物多样性是由于一次致命的进化事件而形成的:植物陆地化。这是指一类藻类(其现代后代仍可在实验室中研究)进化成植物并入侵世界各地陆地的时间点。哥廷根大学的一个研究小组领导了一项对100亿个RNA片段的调查,以确定"枢纽基因"。研究小组牵头的一个国际研究小组生成了大规模基因表达数据,以研究陆地植物最近的藻类近亲之一--一种名为Mesotaeniumendlicherianum的不起眼的单细胞藻类--体内的分子网络。他们的研究成果发表在《自然-植物》上。实验室烧瓶中的内生中苔藻液体样本,即将在无菌条件下与新鲜培养基混合。图片来源:JanineFürst-Jansen研究人员利用在哥廷根大学(SAG)藻类培养物保藏中心(AlgalCultureCollection)安全保存了25年之久的一株内切藻,并利用那里独特的实验装置,将内切藻连续暴露在一系列不同的光照强度和温度下。哥廷根大学研究员JanineFürst-Jansen说道:"我们的研究首先考察了藻类对光和温度的适应能力极限。我们将其置于8°C至29°C的宽温度范围内。当我们根据深入的生理分析观察到广泛的耐温性和耐光性之间的相互作用时,我们感到非常好奇。"陆地植物的近缘藻类之一--一种名为Mesotaeniumendlicherianum的单细胞藻类的显微镜图像(20微米相当于0.02毫米)。图片来源:TatyanaDarienko研究人员不仅从形态和生理层面研究了藻类的反应,还读取了大约100亿个RNA片段的信息。研究利用网络分析法同时研究了近两万个基因的共同行为。在这些共享模式中,发现了在协调基因表达以响应各种环境信号方面发挥核心作用的"枢纽基因"。这种方法不仅为了解藻类基因表达如何针对不同条件进行调控提供了宝贵的见解,而且结合进化分析,还揭示了这些机制是如何成为陆地植物及其藻类亲缘植物的共同机制的。在哥廷根大学(SAG)的藻类培养物保藏中心(AlgalCultureCollection)安全保存了超过25年的中叶藻(Mesotaeniumendlicherianum)样本。这张图片显示了独特的实验装置,它使研究人员能够将内切藻暴露在连续的不同光照强度和温度范围内。图片来源:JanineFürst-Jansen哥廷根大学的扬-德-弗里斯(JandeVries)教授说:"这项研究的独特之处在于,我们的网络分析可以指出这些藻类中不为人知的整个遗传机制工具箱。当我们观察这些遗传工具箱时,我们发现它们在6亿多年的植物和藻类进化过程中是共享的!"哥廷根大学博士生ArminDadras解释说:"我们的分析使我们能够确定哪些基因在各种植物和藻类中相互协作。这就好比发现了哪些音符在不同的歌曲中始终保持和谐。这种洞察力有助于我们发现长期的进化模式,揭示某些基本的基因'音符'是如何在众多植物物种中保持一致的,就像永恒的旋律在不同的音乐流派中产生共鸣一样。"...PC版:https://www.cnbeta.com.tw/articles/soft/1401379.htm手机版:https://m.cnbeta.com.tw/view/1401379.htm

封面图片

耶鲁大学科学家发现古代植物是如何从水生环境适应陆地的

耶鲁大学科学家发现古代植物是如何从水生环境适应陆地的然而,大约4亿年前,它们发展了维管系统,使它们能够更有效地从土壤中提取水分,并将其用于光合作用,这一变化对地球的大气和生态系统产生了重大影响。一个研究小组现在通过揭示这些古老的植物如何能够在水资源有限的新栖息地茁壮成长,解开了古生物学中的一个百年之谜。耶鲁大学的一个研究小组在《科学》杂志上发表的一项研究发现,植物的维管系统的一个小变化使它们更耐干旱,使它们能够在新的、更干燥的环境中茁壮成长。该团队由耶鲁大学环境学院教授CraigBrodersen领导,包括主要作者MartinBouda和KyraPrats。这些发现为该领域的探索开辟了新的途径。这项研究是由一个长达一个世纪的争论所激发的,即为什么最早的陆地植物的简单、圆柱形维管系统迅速转变为更复杂的形状。在20世纪20年代,科学家们在化石记录中注意到了这种复杂性的增加,但却无法确定进化变化的原因--如果有的话。在过去的十年里,布罗德森和他的同事们探索了现代植物维管系统如何构建的影响,特别是在干旱的背景下。当植物开始变干时,气泡会卡在木质部中,木质部是将水和营养物质从土壤中输送到茎和叶的专门组织。气泡阻碍了水的流动。如果不加以控制,它们会蔓延到整个网络,使植物与土壤脱节,并最终导致植物死亡。避免这些气泡的形成和扩散对今天容忍干旱是至关重要的,研究小组应用同样的思维来解释化石记录中的维管束组织模式。通过Cheilantheslanosa(又称毛唇蕨)叶片的横截面,显示出木质部的心形血管系统。资料来源:CraigBrodersen实验室最早的陆地植物的圆柱形维管系统类似于一捆吸管,最初在它们早期的水生环境中发挥了良好的作用。但是当它们迁移到水资源较少的土地上时,这些植物不得不克服干旱引起的气泡。早期的陆地植物通过将祖先的圆柱形木质部重新配置成更复杂的形状,以防止气泡扩散来做到这一点。从历史上看,对化石记录中血管复杂性增加的观察被认为是偶然的,意义不大,是植物体积增长和发展更复杂结构的副产品。新的研究颠覆了这种观点。"这并不是偶然发生的。实际上有一个很好的进化原因,"Bouda说。"有来自干旱的强大压力使之发生。这是一个百年之谜,我们现在已经回答了这个问题。"Bouda指出,共同撰写这项研究的研究小组的构成,包括古植物学家、植物生理学家和水文学家,帮助提供了技术和观点,使他们发现了泥盆纪植物中出现复杂维管结构的原因。该团队使用显微镜和解剖学分析来查看植物标本的内部运作,其中包括来自耶鲁大学皮博迪博物馆的化石标本,以及来自耶鲁大学迈尔斯森林、沼泽植物园、纽约植物园和康涅狄格大学的活植物。利用这些信息,研究小组随后预测了能够耐受干旱的维管束构型,并说明了形状上看似简单的变化是如何导致耐旱性的深刻改善的。"每当植物偏离圆柱形维管系统时,每当它发生一点点变化时,植物就会在其抗旱能力方面得到奖励。如果这种奖励一直存在,那么它将迫使植物从古老的圆柱形维管系统向这些更复杂的形式发展,"Brodersen说。"通过这些非常小的变化,植物解决了这个问题,它们在地球历史的早期就必须解决这个问题,否则我们今天看到的森林就不会存在。这些变化发生得相当迅速--在古生物学的时间框架内,也就是--大约2000-4000万年。植物维管束结构变化背后的驱动力可能有助于为培育抗旱植物的研究提供信息,帮助建立对气候变化影响的复原力并解决与生产有关的粮食不安全问题。"现在我们对维管系统是如何组合的,以及这如何影响植物的耐旱能力有了更好的了解,这就是可以作为育种计划的目标--例如,制造更好的根系,在植物中制造更好的维管系统。"...PC版:https://www.cnbeta.com.tw/articles/soft/1337009.htm手机版:https://m.cnbeta.com.tw/view/1337009.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人