《自然》杂志刊登IBM“AI模拟芯片”研究成果,效能可达传统芯片14倍https://www.ithome.com/0/714/474.htm

None

相关推荐

封面图片

中山大学团队发现编织晶界 研究成果在《自然》杂志发表

中山大学团队发现编织晶界研究成果在《自然》杂志发表“做一张更高效、更可靠、更耐用的分离膜,这是我们的出发点。”中山大学化学学院郑治坤教授团队成功制备出高韧性、高弹性、高机械强度的二维晶体薄膜,并报告了一种利用牺牲性小分子结构导向剂导向相邻晶畴形成编织晶界结构的制备方法,有望扩展晶体膜在分离、光电、柔性器件等领域的应用。相关成果近日刊发在《自然》杂志。论文截图。本文图片均由中山大学提供晶界是晶体内部的缺陷结构,通常,天然和合成晶态材料是由多个单晶晶畴连接到一起,其间的大量晶界制约着材料的机械稳定性。这一影响在由单层原子或少数原子层构成的二维晶体中格外严重,一个线性晶界就将导致二维晶体薄膜的断裂。此外,如同木材刚劲则容易折断、柔软则难以承重,二维晶体的机械强度与韧性往往相互制约。在该研究中,团队在制备二维晶体聚合物时加入牺牲性导向试剂,以线性聚合物为“梭”,利用其自发缠绕、穿插的特性,将二维聚合物编织起来,形成编织晶界。待晶界形成,线性聚合物又会随排异的结晶过程自动离开。进一步实验表明,这种全新晶界结构——编织晶界连接形成的晶态聚合物膜具有高韧性、高弹性和高机械强度的特点,其抗压性能接近铝合金和黄金。当材料受力断裂时,裂纹不扩展,且不影响裂纹附近膜的机械性能。编织晶界聚合物均孔膜合成示意图。郑治坤教授表示,这为二维晶体材料在柔性器件和分离膜方面的应用奠定了基础。柔性材料可用于生产柔性显示器、柔性电池、柔性传感器等;膜分离技术则已普遍用于化工、环保、生物工程等领域。与常规膜分离相比,全结晶的聚合物膜有望以更高效率分离出更高纯度的物质。郑治坤教授指导博士生杨永航做实验。...PC版:https://www.cnbeta.com.tw/articles/soft/1432469.htm手机版:https://m.cnbeta.com.tw/view/1432469.htm

封面图片

华为基于AI的天气预报系统研究成果登上顶级科研杂志《Nature》

华为基于AI的天气预报系统研究成果登上顶级科研杂志《Nature》这是近年来,中国科技公司首篇作为唯一署名单位发表的《Nature》正刊论文。据悉,在这篇研究论文中,提出了基于AI的天气预报系统“盘古气象”。据介绍,这个AI模型使用了39年的全球再分析天气数据作为训练数据,其预测准确率与全球最好的数值天气预报系统IFS相当。在确保极高精准度的同时,盘古气象在相同的空间分辨率下,比IFS要快10000倍以上。同时,在未来,研究团队希望通过融合更多垂直层次和大气变量、整合时间维度并训练4D深度网络、使用更深和更宽的网络等方法,实现模型的进一步迭代。对该研究论文,以及华为的研究成果,《Nature》的审稿人给予了高度评价:“华为云盘古气象大模型让人们重新审视气象预报模型的未来,模型的开放将推动该领域的发展。”...PC版:https://www.cnbeta.com.tw/articles/soft/1369357.htm手机版:https://m.cnbeta.com.tw/view/1369357.htm

封面图片

《三体》“人造太阳”有望实现?袁丁团队研究成果登上《自然·天文学》杂志

《三体》“人造太阳”有望实现?袁丁团队研究成果登上《自然·天文学》杂志发表杂志《自然·天文学》(NatureAstronomy)内页截图5月25日,该成果以“TransverseOscillationsandEnergySourceinaStronglyMagnetizedSunspot”《强磁化太阳黑子中的横模振荡与能量源》为题发表在《自然·天文学》上,哈工大(深圳)副教授袁丁为第一兼通讯作者,硕士研究生付立博为第二作者,教授冯学尚和博士后BlazejKuzma为合作作者。记者了解到,这项研究集合了欧洲、美国等多国科学家、科研机构的共同努力。哈工大(深圳)空间科学与应用技术研究院冯学尚教授与袁丁副教授作为课题发起者,承担了“总设计师”的工作,助人类理解太阳再上台阶。“日冕加热问题”意义重大“中国探月工程”已成功从月球带回了月壤。月亮越来越“近”,那么太阳呢?哈工大(深圳)空间科学与应用技术研究院副教授袁丁告诉记者,目前人类对太阳的研究仍停留在“初级阶段”。“现阶段,我们研究太阳主要服务航空宇航、通讯导航等领域。随着数字经济的发展,人类在太空中的资产越来越多,如空间卫星、空间站、月球(火星)基地,与之相随的是庞大的数字经济产业链。而太阳的活动直接威胁着人类的太空资产。太阳风暴来袭,电力网络或通讯系统受损,我们将面临没有电力、通信、互联网和社交媒体的生活。”太阳黑子中本影纤维在强磁区域横向震荡,携带巨大的能量太阳是一个由氢组成的气体球,其能量均来自于太阳内部的核聚变反应——能量由内向外传输,从太阳内核到太阳表面(光球层),温度从1600多万摄氏度降低到5000多摄氏度。日冕处于光球层之外,距离内核的热源更远,其温度应该更低。但日冕的实际温度却高达数百万摄氏度,比光球层高出1000-10000倍,这就是困扰物理学界百年的难题——太阳日冕加热问题。太阳日冕加热问题是太阳研究领域的“显学”,在2012年被SCIENCE《科学》杂志选为当代天文学的八大未解之谜之一。哈工大(深圳)空间科学与应用技术研究院副教授袁丁袁丁本科在哈工大学习光信息科学与技术,在瑞典皇家理工大学取得核能工程硕士,此后又在英国华威大学获得物理学哲学博士。复合、跨学科的学习经历,为他后来研究太阳物理打下了扎实基础。2017年,完成学业后,袁丁来到哈工大(深圳)空间科学与应用技术研究工作。“这是一个诺奖级别的科研主题。”袁丁说,他长期关注日冕加热问题:日冕为什么那么热?弄清日冕加热的原理,将推进“人造太阳”相关科研,人类用上安全、清洁、高效、可持续的“人造太阳”能源或将不再是梦想。科幻小说《三体》描述的未来世界里,人类造出了可控核聚变装置——反应炉中燃起的“微型太阳”,消耗少量的燃料就能释放出巨大的热量用于发电,这种装置被称为“人造太阳”。古德太阳望远镜成“神助攻”关于日冕加热问题,科学界有过众多假设、推想以及研究。冯学尚与袁丁在前人的基础上又进一步。2018年,袁丁赴美国加州大熊湖天文台开展天文观测,在那里找到了破解谜题的“神助攻”——古德太阳望远镜。古德太阳望远镜口径为1.6米,是目前世界上正在运营的最大口径的太阳望远镜,其得天独厚的观测台址和强大的观测仪器设备,为攻克该项极具挑战的研究课题提供了可能。袁丁利用古德太阳望远镜的高时空分辨率观测资料,发现太阳黑子的强磁场中存在周期性横向运动,即横模磁流体波。美国大熊湖天文台口径1.6米古德太阳望远镜是世界上口径最大的现役太阳望远镜袁丁解释说,太阳黑子是太阳表面温度最低的结构,温度约为4000摄氏度,其上方对应的太阳活动区却是太阳日冕温度最高的区域,约为200万至2000万摄氏度,这样由太阳黑子和活动区组成的磁场和高温等离子体耦合结构对太阳等离子体加热的条件更加苛刻,这些特征引起了研究团队的注意。2018年袁丁在美国加州大熊湖天文台进行天文观测时,恰逢太阳黑子活跃周期,他发现太阳黑子里的本影纤维横向摆动,由此产生出巨大能量。“观测时机很重要。”袁丁说。机会总是偏爱有准备的头脑。观测、查阅数据、提出假想并联合国际团队共同研究,最终根据数学建模,计算出太阳黑子的强磁区域(约4000高斯)所需驱动力高出太阳其它区域的100至1000倍,此类运动所携带的能量流约为7500000瓦每平方米,只要千分之一或者万分之一的能量即可足太阳日冕加热所需能量流,符合太阳等离子体加热的要求。“太阳黑子强磁区域的横向运动相当于城市中高楼大厦都在横向摆动,此类运动携带了巨大的能量流,只有强烈的地震可以驱动此类运动。据此可以想象,太阳黑子强磁场的横向运动携带着很高的能量。据团队估算,该能量流相当于7500部空调全功率炙烤1平方米的面积。”袁丁说。研究成果引发热议谈及研究的意义,袁丁称该研究最大的突破是首次探测到比日冕加热所需能量流强上万倍的全新能量源,并利用超级计算机模拟重现了该能量源的等离子体加热效应,开创了日冕加热的革新性领域。该研究具备解决日冕加热问题这一百年物理学难题的潜力,有望成为下一代4-8米口径太阳望远镜等大型国际科研设备的重点科学目标。据了解,论文发表之后,引起了科学界和公众密切关注。Nature杂志社邀请意大利宇航局著名科学家MarcoStangalini针对此研究撰写评述,评价此研究对于日冕加热理论的突破性贡献和对于大型地面太阳望远镜建设的指导意义。《国家地理》等十几家国际著名媒体和科学杂志报道了此项研究。电视剧《三体》剧照该研究探测到比日冕加热所需能量流还强的全新能量源,这不禁诱发联想——《三体》中的“人造太阳”会否因此更加接近现实?袁丁表示,该成果的确有助于推动“人造太阳”的等离子体加热技术研发。等离子体加热是解释太阳风来源的重要步骤,而太阳风为星际旅行提供了重要的燃料。“当然,无论是‘人造太阳’还是‘星际旅行’,都不太可能在短期内变为现实,但该项研究成果为后续的研究奠定了非常重要的基础。”袁丁表示,该成果将相关科研的“进度条”往前推动了一步。袁丁同时透露,该团队将会继续聚焦日冕加热领域的科研。“下一步,团队研究的焦点是太阳黑子的全新能量源是否普遍存在。再往前的目标则是将该理论应用到恒星黑子,利用先进的数学建模和天文设备探索恒星黑子的等离子体加热机制。”该项目由冯学尚与袁丁领衔的国际团队共同完成,研究得到了全球专家学者的支持:硕士研究生付立博和BlazejKuzma博士后分别参与了天文数据分析和双流体磁流体数值模拟工作;哈工大(深圳)空间科学与应用技术研究院负责天文实验设计和天文数据分析工作;新泽西理工大学(大熊湖天文台)承担古德太阳望远镜的天文观测和数据校准工作;西班牙加纳利天文物理研究所承担斯托克斯光学反演和建模工作;波兰居里夫人大学物理学院负责双流体磁流体数值模拟工作;比利时鲁汶大学数学系负责数学建模工作;印度理工学院团队参与了天文实验设计和论文写作相关工作;昆明理工大学信息工程与自动化学院、深圳信息职业技术学院、国家天文台参与了天文数据分析等相关工作。【哈工大(深圳)空间科学与应用技术研究院】...PC版:https://www.cnbeta.com.tw/articles/soft/1368941.htm手机版:https://m.cnbeta.com.tw/view/1368941.htm

封面图片

IBM的新型模拟人工智能芯片比GPU更高效

IBM的新型模拟人工智能芯片比GPU更高效新的模拟人工智能芯片仍在开发中,它能够在同一位置同时计算和存储内存。这种设计模拟了人脑的运作,从而提高了能效。该技术不同于当前的解决方案,当前的解决方案需要在内存和处理单元之间不断移动数据,从而降低了计算能力,增加了功耗。在该公司的内部测试中,在评估模拟内存计算的计算精度时,新芯片在CIFAR-10图像数据集上显示出92.81%的准确率。IBM声称,这一精确度水平可与采用类似技术的任何现有芯片相媲美。更令人印象深刻的是它在测试过程中的能效,每次输入仅消耗1.51微焦耳的能量。上周发表在《自然-电子学》(NatureElectronics)上的这篇研究论文还提供了有关该芯片构造的更多信息。该芯片采用14纳米互补金属氧化物半导体(CMOS)技术制造,拥有64个模拟内存计算内核(或瓦片)。每个内核都集成了一个256x256的突触单元交叉阵列,能够执行与一层深度神经网络(DNN)模型相对应的计算。此外,该芯片还配备了一个全局数字处理单元,能够执行对某些类型的神经网络至关重要的更复杂运算。IBM的新芯片是一项引人关注的进步,尤其是考虑到近来人工智能处理系统的功耗呈指数级增长。有报告显示,人工智能推理机架的耗电量通常是普通服务器机架的10倍,这导致了高昂的人工智能处理成本和环境问题。在这种情况下,任何能提高处理效率的改进都会受到业界的热烈欢迎。作为额外的好处,专用的高能效AI芯片有可能减少对GPU的需求,从而降低游戏玩家的价格。不过,值得注意的是,这目前只是推测,因为IBM芯片仍处于开发阶段。其过渡到大规模生产的时间表仍不确定。在此之前,GPU仍将是人工智能处理的主要选择,因此在不久的将来,GPU的价格不太可能变得更低。...PC版:https://www.cnbeta.com.tw/articles/soft/1378527.htm手机版:https://m.cnbeta.com.tw/view/1378527.htm

封面图片

IBM模拟AI芯片登Nature:能效提升14倍 语音识别速度提升7倍

IBM模拟AI芯片登Nature:能效提升14倍语音识别速度提升7倍一、利用PCM存储数据,模拟芯片解决AI技术高能耗问题AI相关技术在飞速发展的同时,也面临着能源消耗的问题。为了提升能源效率,IBM来自世界各地实验室的研究人员共同研发了这款模拟AI芯片。据称,在两个AI推理实验中,该芯片都像同类数字芯片一样可靠地执行任务,但其完成任务的速度更快,能耗更低。IBM称,其研究人员一直都在深耕模拟AI芯片领域。2021年,其团队就发布了一款名为Fusion的模拟芯片,利用PCM设备的存储能力和物理属性,更高效地实现人工神经网络。传统计算机基于冯·诺依曼结构——一种将程序指令存储器和数据存储器合并在一起的电脑设计概念结构,每次计算都将数据从DRAM(动态随机存取存储器)内存传输到CPU,导致工作速度受到实际限制,永远无法实现CPU的真正计算能力,这被称为“冯·诺依曼瓶颈”。▲当每次计算将数据从DRAM内存传输到CPU时,传统计算机就会出现瓶颈(图源:IBM官网)通过利用PCM设备的物理特性,模拟芯片可以克服冯·诺依曼瓶颈,在存储数据的同一位置执行计算。由于没有数据移动,它可以在很短的时间内执行任务,并且消耗的能源更少。▲模拟芯片通过在存储数据的地方执行计算来克服瓶颈(图源:IBM官网)例如,将64位数据从DRAM移动到CPU会消耗1-2nJ(纳焦)能量,而在PCM设备上执行只需消耗1-100fJ(飞焦),是前者的1万至200万分之一。当扩展到数十亿次操作时,所节省的能源是巨大的。此外,当设备不活动时,PCM不会消耗电力,即使断电数据也将保留10年。二、采用全新设计方式,14nm芯片可编码3500万个PCM虽然IBM早在两年前便以研发出了模拟芯片,并尝试将其用于提升AI计算性能,但Fusion芯片一次只能访问一个PCM设备,对速度和能效的提升并不显著。IBM本次发布的这款芯片采用了新的设计方式,利用34个大型PCM阵列,结合了数模转换输入、模拟外围电路、模数转换输出和大规模并行二维网格路由。每个14nm芯片上可编码3500万个PCM,在每权重对应2-PCMs的方案中,可容纳1700万个参数。将这些芯片组合在一起,便能够像数字芯片一样有效地处理真实AI用例的实验。▲IBM模拟AI芯片的显微照片(图源:论文插图)上图中,图a显示了芯片的显微照片,突出显示了34个PCM阵列模块的2D网格,每个模块都有自己的512×2,048PCM交叉阵列。PCM器件集成在14nm前端电路上方的后端布线中(图b),可通过电脉冲调整窄底电极上晶体相(高导电性)和非晶相(高电阻性)材料的相对体积来编码模拟电导状态。对PCM器件进行编程时采用并行编程方案(图c),这样同一行中的所有512个权值都会同时更新。该研发团队采用的方法是优化主导深度学习计算的MAC(乘积累加运算)。通过读取电阻式NVM(非易失性存储器)设备阵列的行,然后沿列收集电流,团队证明可以在存储器内执行MAC,无需在芯片的存储器和计算区域之间或跨芯片移动权重。三、精确度不减,语音识别速度提升7倍、大模型运行能效提升14倍为了验证芯片的有效性,该团队设计了两个实验对其进行测试。他们从MLPerf中选择了两个神经网络模型,分别是语音唤醒和语音转文本模型。MLPerf由斯坦福、哈佛等顶尖学术机构发起成立的,权威性最大、影响力最广的国际AI性能基准测试。第一个实验围绕关键词语音检测展开。该团队提出了一种卷积神经网络架构,并在包含12个关键字的谷歌语音命令数据集上进行训练。团队采用了架构更简单的FC(全连接)网络结构,最终达到了86.14%的识别精度,且提交速度比MLPerf目前最佳情况快7倍。该模型使用硬件感知训练在GPU上进行训练,然后部署在团队的模拟AI芯片上。▲端到端语音唤醒任务相关图表(图源:论文插图)第二个实验围绕语音转文本展开,规模更大。团队使用5个模拟AI芯片组合在一起,运行RNN-T(循环神经网络转换器)模型,以逐个字母地转录语音内容。该系统包含5个芯片上1.4亿个PCM设备的4500万个权重,能够采集人们说话的音频并以非常接近数字硬件设置的精度进行转录。该实验最终达到9.258%的单词错误率,能量效率达6.704TOPS/W(万亿次操作每秒/瓦),比MLPerf目前最佳能效提高了14倍。▲模拟AI芯片在RNN-T模型上表现出的性能相关图表(图源:论文插图)与第一个实验不同,这个实验并不完全是端到端的,这意味着它确实需要一些片外数字计算。IBM称,这里涉及的额外计算很少,如果在芯片上实现,最终的能效仍然高于当今市场上的产品。结语:模拟AI芯片能否成为下一个趋势继2021年推出第一款模拟芯片Fusion后,IBM于近日发布了专攻AI的模拟芯片,速度、能效均比传统数字芯片大幅提升,准确率也保持高水准。传统芯片受制于“冯·诺依曼瓶颈”,而模拟芯片可以打破这一桎梏,为AI技术带来新的生命力。未来,模拟芯片市场能否得到进一步发展,我们会持续关注。来源:Nature、IBM官网...PC版:https://www.cnbeta.com.tw/articles/soft/1379447.htm手机版:https://m.cnbeta.com.tw/view/1379447.htm

封面图片

IBM宣布:做出全球第一个2纳米芯片不过IBM表示要到正式量产还得花上几年时间,他们表示在相同功率之​​下,2纳米将比现有7纳米效能提高45%,若维持相同效能则可节省75%耗能。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人