用DNA克服“不可能”,以打造出可改变技术的超导体

用DNA克服“不可能”,以打造出可改变技术的超导体科学家们已经用DNA克服了一个几乎无法克服的障碍,从而使得工程材料将彻底改变电子产品。这项工作于7月28日发表在《科学》上,由弗吉尼亚大学医学院的研究人员和他们的合作者完成。据了解,这些工程材料的一个可能结果可能是超导体,它的电阻为零,并允许电子不受阻碍地流动。这意味着跟目前的电力传输方式不同,它们不会损失能量也不会产生热量。开发一种可以在正常压力和室温下广泛使用的超导体--而不是像现在这样在极高或极低的温度下--可以带来许多技术奇迹。其中包括超高速计算机、缩小电子设备的尺寸、让高速列车漂浮在磁铁上并减少能源使用及更多。50多年前,斯坦福大学的物理学家WilliamA.Little首次提出了这样一种超导体。科学家们花了几十年时间试图使其发挥作用。然而即使在验证了他的想法的可行性之后,他们仍面临着一个似乎无法克服的挑战--直到现在。弗吉尼亚大学生物化学和分子遗传学系的EdwardH.Egelman博士一直是低温电子显微镜(cryo-EM)领域的领导者,他和他实验室的研究生LeticiaBeltran将低温电子显微镜成像用于这个看似不可能的项目。"他说道:“这表明低温电镜技术在材料研究方面有很大的潜力。”原子层面上的工程实现Little的超导体想法的一个可能的方法是修改碳纳米管的格子。这些是碳的空心圆柱体,非常微小,必须以纳米--十亿分之一米--来衡量。然而这里存在一个巨大的挑战:控制沿着纳米管的化学反应以便晶格能按照需要精确地组装并按照预期的功能发挥作用。Egelman和他的同事在生命的组成部分中找到了答案。他们利用DNA即告诉活细胞如何运作的遗传物质,并利用它来指导化学反应,以此来克服Little超导体的巨大障碍。简而言之,他们利用化学来进行惊人的精确结构工程--在单个分子水平上的建设。其结果是一个由碳纳米管组成的晶格,并专门按照Little的室温超导体的需要进行组装。Egelman说道:“这项工作表明,通过利用DNA序列对相邻反应位点之间间距的控制可以实现有序的碳纳米管修饰。”目前,他们建造的晶格还没有被测试过超导性。不过研究人员指出,它提供了原则性的证明并且在未来有很大的潜力。“虽然低温电镜已经成为生物学中确定蛋白质集合体原子结构的主要技术,但迄今为止,它在材料科学中的影响要小得多,”Egelman说道。Egelman和他的合作者称,他们的DNA指导下的晶格构建方法可以有广泛的有用的研究应用,尤其是在物理学方面。但它也验证了建造Little的室温超导体的可能性。科学家们的工作加上近年来在超导体方面的其他突破,最终可能会改变我们所知的技术并带来一个更加“星际迷航式”的未来。Egelamn称:“虽然我们经常认为生物学使用物理学的工具和技术,但我们的工作表明,生物学中正在开发的方法实际上可以应用于物理学和工程学的问题。这就是科学的精彩之处:无法预测我们的工作将产生什么结果。”...PC版:https://www.cnbeta.com/articles/soft/1302053.htm手机版:https://m.cnbeta.com/view/1302053.htm

相关推荐

封面图片

Nature发文:室温超导体将如何改变科学?

Nature发文:室温超导体将如何改变科学?答案取决于应用的领域,以及假设的材料是否还具有其他关键品质。但至少在一些科学领域中,尤其是那些使用强磁场的领域,更好的超导体可能会产生巨大的影响。超导体是一种在一定温度下能够无电阻传输电流的材料,因此不会产生废热。但所有已确认的超导体都只在低温或极端压力条件下或两者兼而有之的情况下才表现出这种特性。超导相变时热容(c(v),蓝色)和电阻率(ρ,绿色)的行为这种材料在实验室中已随处可见,因为研究人员能够使用一系列技术来降低它们的温度,尽管这会增加实验的成本和复杂性。但在日常应用中,超导体的低温要求是一道难以越过的门槛。一个极端的例子是大型强子对撞机(LargeHadronCollider,LHC),它是欧洲核子研究中心(CERN)的加速器。为了让质子在27公里的圆圈内运动,大型强子对撞机利用温度仅为1.9开尔文(-271.25ºC)的超导线圈产生强磁场。要做到这一点,首先需要一个包含96吨液氦的低温系统。这是世界上同类系统中规模最大的。欧洲核子研究中心磁体研究员、核工程师LucaBottura曾表示,“如果我们不需要极端温度,工程设计就会大大简化。”因此,能在室温下或接近室温工作的超导体将迅速彻底改变许多科学领域。但科学还没那么快到达这一目标。量子问题以量子计算机为例,这项新兴技术有望解决经典计算机无法完成的某些任务。而构建量子计算机的主要方法之一是将信息存储在超导材料环中。量子计算机这些超导材料被冷却到接近绝对零度(-273.15ºC),然后被装在昂贵的、类似于俄罗斯套娃的设备中,这种设备被称为稀释冰箱。稀释冰箱在基于超导体的量子计算机中,温度升高哪怕是零点几度,性能也会迅速下降,其原因与超导性无关。超导量子计算的共同发明人中村泰信(YasunobuNakamura)认为,量子计算对任何类型的噪声都极为敏感,而热振动则是一个主要敌人,它会产生虚假的“准粒子(quasiparticles)”。他提到,在100-150毫开尔文左右,就可以看到热激发准粒子的对抗效应。在其他情况下,实验本身可能不需要极度低温,但超导体仍需要保持比其转变为超导时(即Tc)还要低得多的温度。超导体的物理特性各不相同。但在许多应用中,尤其是在高磁场磁体中,有两个特性至关重要:临界电流和临界磁场。这是因为超导电性不但会在温度升高时丧失,而且还会在材料被推动承载超过一定量的电流或暴露在足够高的磁场中时丧失。麻省理工学院的低温系统中包裹着具有高转变温度的超导体.Credit:DavidL.Ryan/TheBostonGlobeviaGetty最重要的是,临界磁场和临界电流都与温度有关:温度越低,材料所能承受的电流和磁场就越大。因此,虽然超导体的Tc很高,但这并不意味着它可以在低于Tc的任何温度下使用。在许多应用中,超导体的性能会随着系统温度的降低而提高。幸运的是,目前发现的最好的超导体,包括一类叫做铜氧化物(或铜酸盐)超导体的超导体,只要保持足够低的温度,也能承受非常高的磁场。在现场四年前,位于佛罗里达州塔拉哈西的美国国家高磁场实验室(NationalHighMagneticFieldLaboratory,NHMFL)曾使用一种铜氧化物来获得稳定(非脉冲)磁场强度的记录。NHMFL的超导线圈能产生45.5特斯拉的磁场,但前提是它们必须保持在液氦中,即低于4.2开尔文。NHMFL首席科学家、物理学家LauraGreene说:“我们使用高-Tc超导体不是因为它们的Tc值高,而是因为它们的临界磁场高。”美国另一个国家实验室,位于新泽西州的普林斯顿等离子体物理实验室(PrincetonPlasmaPhysicsLaboratory,PPPL)的机械和电气工程师YuhuZhai说:“如果你想要一个高磁场磁体,那就在尽可能低的温度下运行它,因为那是你获得超导性真正力量的地方。”欧洲核子研究中心正在探索未来粒子对撞机的选择,该对撞机最终以比大型强子对撞机高七倍的能量粉碎质子,物理学家们希望能在这个范围内发现新的基本粒子。欧洲核子研究中心的大型强子对撞机与超级质子同步加速器的地图要达到这些更高的能量,粒子必须使用更高的场或沿着更长的加速器环路进行加速,或者两者兼而有之。为了建造这样一台机器,物理学家梦想在大型强子对撞机旁边挖掘一条长达100公里的环形隧道。但即使有这么大的环形隧道,像大型强子对撞机那样的超导磁体,即带有铌钛线圈的8特斯拉怪兽也无法产生所需的磁场,估计至少需要16到18特斯拉。对此,Bottura认为,“在这一点上,我们显然必须转向其他材料。”目前的高Tc超导体可以实现这一目标,但可能需要将其保持在液氦温度下。中国提出的类似加速器:即环形电子-正电子对撞机,也将使用高Tc超导磁体。北京高能物理研究所所长王贻芳表示,他们考虑高温超导材料已经有一段时间了,主要是铜酸盐和铁基材料。临界电流然而,铜氧化物的超导体也有其他缺点:它们是脆性的陶瓷材料,生产成本高昂,也很难将其制造为电缆。此外,王贻芳也提到,这种材料的临界电流也太低。而另一类铁基超导体原则上性能更好,成本也只有氧化铜的一半。Bottura和其他人正在研究一种全新加速器的可行性。通过用μ介子(类似于电子但质量大207倍的粒子)取代质子,对撞机可以研究与100公里长的质子-质子对撞机相同类型的物理学。但研究对撞机的环要小得多,甚至可以放入现有的大型强子对撞机隧道中,让μ介子绕一圈并不涉及强度特别高的磁场。但问题是产生具有适当特性的μ介子束,可能需要高达40特斯拉的磁铁。在这种强度下,问题不再是超导体,而是如何保持线圈的位置,因为电磁线圈内的电流往往会将磁铁推开。而在40特斯拉的条件下,即使是最坚固的钢材也无法承受机械应力。相反,磁体可能需要使用碳纤维等更坚固的材料。(NHMFL磁体对强度的要求没有那么严格,因为它需要在只有几厘米宽的空间内产生高磁场)。因此,在质子对撞机和μ介子对撞机中,超导体将会发挥巨大作用,但也可能出现其他工程挑战。融合之旅然而,在另一类旨在利用核聚变能的机器中,结构强度已经成为了严重的制约因素。长期以来,一种既定的聚变方法是使用排列成圆环形状,也被称为托卡马克(tokamak)的磁体来限制等离子体,将等离子体加热到数百万度,将氢的各种同位素碰撞在一起。世界上最大的实验性托卡马克名为ITER,正在法国南部建设,它将使用大型液氦来冷却磁体并产生接近12特斯拉的磁场。但根据Zhai的说法,工业和公共资助的实验室都在努力设计基于高Tc超导体的托卡马克磁体。原因有很多,如更高的磁场可能会大幅提高聚变反应堆燃烧燃料的速率,从而在原则上提高可产生的能量,但从聚变中提取能量的许多关键步骤尚未得到证明。工业努力增加高Tc磁性材料产量的一个积极结果是让它们的成本降低了,但它们仍比铌-钛材料昂贵得多。此外,Zhai还表示,托卡马克最终应该放弃液氦冷却。一方面是因为冷却系统复杂难建,另一方面是氦作为稀缺资源,难以建造数百个使用液氦的ITER大小的反应堆。Greene认为,寻找更好的超导材料是一项高风险的任务,迄今为止成功的案例寥寥无几。尽管如此,她还是说到:“这是一项艰苦的工作,也是一项令人兴奋的、正在改变世界的工作。”参考资料:https://www.nature.com/articles/d41586-023-02681-8...PC版:https://www.cnbeta.com.tw/articles/soft/1388387.htm手机版:https://m.cnbeta.com.tw/view/1388387.htm

封面图片

韩国超导低温学会称LK-99不是常温超导体 没有表现出迈斯纳效应

韩国超导低温学会称LK-99不是常温超导体没有表现出迈斯纳效应韩国超导低温学会当天应询表示,韩国量子能源研究中心研究团队所合成的“LK-99”并非常温超导体,因为它并没有表现出超导体的特征。昨日(2日),韩国超导低温学会宣布组成专家验证委员会对该物质进行科学研判。报道称,该委员会解释称,超导现象意味着特定物质会消除电阻,并产生挤出内部磁场的“负效应”,但在与LK-99相关的视频和论文中,并没有出现这种迈斯纳效应。(财联社)标签:#超导频道:@GodlyNews1投稿:@GodlyNewsBot

封面图片

【韩学会:无证据证实LK-99为常温超导体】

【韩学会:无证据证实LK-99为常温超导体】据韩联社,韩国超传导低温学会验证委员会13日在线发布白皮书称,在综合考量原论文数据和国内外再现实验研究结果后认定,完全没有证据可以证明LK-99是常温常压超导体。验证委指出,此前公开的两篇LK-99相关论文中提出的电阻和磁化率测定值等数据均未能体现超导体的“零电阻”和“迈斯纳效应”(即超导体对外部磁场的排斥现象)特征。验证委还指出,根据LK-99相关论文作者提出的方法,在首尔大学等韩国8个研究所进行的再现研究中,均未能在常温或低温环境下再现超导。

封面图片

韩国超导低温学会:LK-99不是常温超导体 没有表现出迈斯纳效应

韩国超导低温学会:LK-99不是常温超导体没有表现出迈斯纳效应然而,事件又出现了翻转。据财联社援引韩联社的报道,韩国超导低温学会应询表示,韩国量子能源研究中心研究团队所合成的“LK-99”并非常温超导体,因为它并没有表现出超导体的特征。8月2日,国超导低温学会宣布组成专家验证委员会对该物质进行科学研判。报道称,该委员会解释称,超导现象意味着特定物质会消除电阻,并产生挤出内部磁场的“负效应”,但在与LK-99相关的视频和论文中,并没有出现这种迈斯纳效应。快科技了解到,迈斯纳效应是超导体从一般状态相变至超导态的过程中对磁场的排斥现象,于1933年时被瓦尔特·迈斯纳与罗伯特·奥克森菲尔德发现。1933年德国物理学家迈斯纳(W.Meissner)和奥森菲尔德(R.Ochsenfeld)对锡单晶球超导体做磁场分布测量时发现,在小磁场中把金属冷却进入超导态时,体内的磁力线一下被排出,磁力线不能穿过它的体内,也就是说超导体处于超导态时,体内的磁场恒等于零。超导体一旦进入超导状态,体内的磁通量将全部被排出体外,磁感应强度恒为零,且不论对导体是先降温后加磁场,还是先加磁场后降温,只要进入超导状态,超导体就把全部磁通量排出体外。此外,超导体还是完全的抗磁体,外加磁场无法进入或(严格说是)无法大范围地存在于超导体内部,这是超导体的另一个基本特性。按照传统的定义,超导指的是在特定的温度、压力条件下呈现出电阻等于零的特性以及具备完全抗磁性的材料。就相当于电子在没有电阻的情况过材料。打个比方:就好像一个人可以高速行驶穿过拥挤的市中心,永远不会撞到红绿灯。所以,超导也也被称为“当代科学的明珠”。想象一下,在电阻几乎消失、能源传递耗损几乎为0的条件下,人类整体能源传输效率,将达到史无前例的高度。...PC版:https://www.cnbeta.com.tw/articles/soft/1374815.htm手机版:https://m.cnbeta.com.tw/view/1374815.htm

封面图片

LK-99 室温超导体论文受到广泛质疑

LK-99室温超导体论文受到广泛质疑自26日,韩国科学家声称发现世界首个室温常压超导体LK-99后。已有许多业内人士对此提出了质疑。有人整理了一个。下面是一些质疑的声音。美国阿贡国家实验室的一位物理学家:“他们表现得像一群业余爱好者。他们对超导知之甚少,而且他们提供一些数据的方式也很可疑。”中国南京大学物理学教授闻海虎表示,,但委派了一位同事来做复现实验。但是,闻海虎还表示,即便是复现,也不能说明它是超导材料,除非判断超导的证据非常明确。印度国家物理实验室的VPSAwana博士在他的个人Facebook上发布了他们的结果称,两次。上周该团队的一位首席研究人员告诉韩国联合通讯社,韩国科学家团队宣布发现室温超导体的论文在网上发表。也许室温超导体这种只在科幻小说中才存在的材料要问世仍需要一些时间。

封面图片

中国科学家独立发现全新高温超导体 实现超导只需-192℃

中国科学家独立发现全新高温超导体实现超导只需-192℃超导领域已经产生5个诺贝尔奖,中国科学家也在超导领域获得了一次国家自然科学一等奖、一次国家最高科学技术奖。王猛教授团队历时三年,成功获得了镍氧化物La3Ni2O7单晶,并确定它能在压力下实现超导,转变温度高达80K(零下192摄氏度),达到了液氮温区(零下196摄氏度)。它也成为铜氧化物高温超导体之外,完全不同体系的高温超导体,而且电子结构、磁性与铜氧化物完全不同,有望推动破解高温超导机理,使设计和预测高温超导材料成为可能。《自然》杂志审稿人也高度评价了这一成果,认为它“具有突出重要性”,“是开创性的发现”。...PC版:https://www.cnbeta.com.tw/articles/soft/1370677.htm手机版:https://m.cnbeta.com.tw/view/1370677.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人