天然双层石墨烯内发现新奇量子效应

天然双层石墨烯内发现新奇量子效应由德国哥廷根大学领导的一个国际研究团队在最新一期《自然》杂志上发表论文称,他们在对天然双层石墨烯开展的高精度研究中,发现了新奇的量子效应,并从理论上对其进行了解释。这一系统制备简单,为载荷子和不同相之间的相互作用提供了新见解,有助于理解所涉及的过程,促进量子计算机的发展。2004年,两位英国科学家用一种非常简单的实验方法从石墨中剥离出石墨片,并借助特殊胶带得到仅由一层碳原子构成的石墨烯。石墨烯是强度最高的材料之一,具有很好的韧性、超强导热性与导电性,应用前景十分广阔。如果将两层石墨烯彼此以特定的角度偏转,所得到的系统甚至会表现出超导性和其他激发量子效应,如磁性。但迄今为止,很难制备出这种偏转的双层石墨烯。在最新研究中,科学家们使用了天然形成的双层石墨烯。他们首先使用简单的胶带从一块石墨中分离出石墨烯样品。为观察量子力学效应,施加了垂直于样品的高电场。他们发现,所得到系统的电子结构发生了变化,且拥有类似能量的电荷载流子出现强烈的累积效应。研究进一步发现,在略高于绝对零度(-273.15℃)下,石墨烯中的电子可相互作用,出现了各种意想不到且复杂的量子相。如相互作用导致电子自旋对齐,使材料在没有施加外部影响的情况下具有磁性。通过改变电场,研究人员也能不断改变双层石墨烯中载流子相互作用的强度。此外,电子运动的自由度在特定条件下会受限,形成电子晶格,且由于相互排斥作用,不再有助于传输电荷,导致系统对电绝缘。哥廷根大学物理系托马斯·韦茨教授表示,新系统的主要优势之一在于材料制备非常简单,研究人员不需要像以前那样在高温下才能获得所需结果,可用于进一步研究各种量子态及量子计算机等。PC版:https://www.cnbeta.com/articles/soft/1305337.htm手机版:https://m.cnbeta.com/view/1305337.htm

相关推荐

封面图片

扭曲到1.08度"魔角"的超导石墨烯中的量子几何魔法

扭曲到1.08度"魔角"的超导石墨烯中的量子几何魔法石墨烯是单层的碳原子,2018年,麻省理工学院的科学家们发现,在适当的条件下,如果将一块石墨烯铺在另一块石墨烯上,并将这两层石墨烯扭曲到一个特定的角度--1.08度--形成扭曲的双层石墨烯,石墨烯就可以成为超导体。自那以后,科学家们一直在研究这种扭曲的双层石墨烯,并试图弄清楚这个"神奇的角度"是如何工作的,俄亥俄州立大学物理学教授、《自然》杂志论文的共同作者MarcBockrath说。"传统的超导理论在这种情况下不起作用,"Bockrath说。"我们做了一系列的实验,以了解这种材料成为超导体的根源。"在传统金属中,高速电子负责导电性。但是扭曲的双层石墨烯有一种被称为"平带"的电子结构,其中电子的移动速度非常慢--事实上,如果角度正好是神奇的1,其速度接近零。研究报告的共同作者、俄亥俄州立大学物理学教授JeanieLau说,根据传统的超导理论,移动速度如此缓慢的电子不应该能够导电。论文的第一作者、Lau研究小组的一名学生HaidongTian以极高的精度获得了一个非常接近"魔角"的装置,按照通常的凝聚态物理学标准,电子几乎被阻止。但该样品还是显示出了超导性。"这是一个悖论:运动如此缓慢的电子怎么可能导电?更不用说超导了。"Lau说。在他们的实验中,研究小组证明了电子的缓慢速度,并对电子运动进行了比以前更精确的测量。而且他们还发现了使这种石墨烯材料如此特别的第一个线索。"我们不能用电子的速度来解释扭曲的双层石墨烯是如何工作的,"Bockrath说。"相反,我们不得不使用量子几何。"就像所有的量子一样,量子几何是复杂的,不是直观的。但这项研究的结果与以下事实有关:电子不仅是一个粒子,也是一个波--因此有波函数。"平带中的量子波函数的几何形状,加上电子之间的相互作用,导致电流在双层石墨烯中流动而不耗散,"共同作者、俄亥俄州立大学物理学教授MohitRanderia说。"我们发现,传统的方程式可以解释我们发现的超导信号的10%。我们的实验测量表明,量子几何是使其成为超导体的90%,"Lau说。这种材料的超导效应只能在极低温度的实验中发现。最终的目标是能够了解导致高温超导的因素,这在现实世界的应用中可能会很有用,例如电力传输和通信。"这将对社会产生巨大的影响,这是一个漫长的过程,但这项研究肯定会使我们在理解它如何发生方面取得进展。"...PC版:https://www.cnbeta.com.tw/articles/soft/1347799.htm手机版:https://m.cnbeta.com.tw/view/1347799.htm

封面图片

上海交大团队首次在天然单晶石墨烯中实现量子反常霍尔效应

上海交大团队首次在天然单晶石墨烯中实现量子反常霍尔效应近日,上海交通大学物理与天文学院陈国瑞课题组在Science上发表题为“ObservationofaCherninsulatorincrystallineABCA-tetralayergraphenewithspin-orbitcoupling”的研究论文。该研究首次在天然单晶石墨烯中实现了量子反常霍尔效应,为实现量子反常霍尔这一重要物理效应提供了新思路和新的技术路线。(澎湃新闻)

封面图片

石墨烯的扭曲科学:探索奇异物质的新量子尺

石墨烯的扭曲科学:探索奇异物质的新量子尺插图描述了NIST团队在实验中使用的两层石墨烯(两个双层),用于研究摩尔纹量子材料的一些奇特性质。左侧插图是两个双层石墨烯部分的俯视图,显示了当一个双层石墨烯相对于另一个双层石墨烯扭转一个小角度时形成的摩尔纹。资料来源:B.Hayes/NIST根据扭曲角度的不同,这些被称为摩尔量子物质的材料可以突然产生自己的磁场,成为零电阻的超导体,或者相反,变成完美的绝缘体。约瑟夫-A-斯特里西奥(JosephA.Stroscio)和他在美国国家标准与技术研究院(NIST)的同事以及一个国际合作团队开发了一种"量子尺",用于测量和探索这些扭曲材料的奇异特性。这项工作还可能带来一种新的、微型化的电阻标准,可以直接在工厂车间校准电子设备,而无需将它们送到异地的标准实验室。来自弗吉尼亚州费尔法克斯乔治梅森大学的物理学家费雷什特-加哈里(FereshteGhahari)是这项研究的合作者,他利用两层直径约为20微米的石墨烯(称为双层石墨烯),相对于另两层石墨烯进行扭曲,制造出了一个摩尔量子物质装置。加哈里利用NIST纳米科学与技术中心的纳米加工设备制造了这个装置。随后,NIST研究人员马鲁-斯洛特(MarlouSlot)和尤利娅-马克西门科(YuliaMaximenko)将这种扭曲的材料装置冷却到绝对零度以上的百分之一,从而减少了原子和电子的随机运动,提高了材料中电子相互作用的能力。达到超低温后,他们研究了改变强外部磁场强度时石墨烯层中电子的能级如何变化。测量和操纵电子的能级对于设计和制造半导体器件至关重要。这幅摩尔纹量子材料中一个点的放大图描绘了电子(右边的红点和蓝点)的阶梯状能级。阶梯的背景类似于图纸能量,表明测量到的能级可以作为一种量子尺来确定材料的电学和磁学特性。资料来源:NIST/B.海耶斯电子运动和能级为了测量能级,研究小组使用了斯特里西奥在NIST设计和制造的多功能扫描隧道显微镜。当研究人员在磁场中对石墨烯双层膜施加电压时,显微镜会记录从材料"隧穿"到显微镜探针尖端的电子所产生的微小电流。在磁场中,电子以圆形轨迹运动。通常,固体材料中电子的圆形轨道与外加磁场有着特殊的关系:由于电子的量子特性,每个圆形轨道所包围的面积乘以外加磁场,只能得到一组固定的离散值。为了保持固定的乘积,如果磁场减半,那么电子轨道所包围的面积就必须增加一倍。遵循这一规律的连续能级之间的能量差,就像尺子上的刻度线一样,可以用来测量材料的电子和磁性能。任何与这一模式的细微偏差都代表着一种新的量子标尺,可以反映出研究人员正在研究的特定量子摩尔纹材料的轨道磁特性。发现与影响事实上,当NIST的研究人员改变施加在摩尔纹石墨烯双层膜上的磁场时,他们发现了新量子标尺发挥作用的证据。电子圆形轨道所包围的面积乘以外加磁场不再等于一个固定值。相反,这两个数字的乘积发生了偏移,偏移量取决于双层石墨的磁化程度。这种偏差转化为电子能级的一组不同刻度线。这些发现有望为我们揭示局限在石墨烯扭曲薄片中的电子如何产生新的磁性带来新的启示。斯特里西奥说:"利用新的量子标尺来研究圆形轨道如何随磁场变化,我们希望能揭示这些摩尔纹量子材料的微妙磁特性。"量子摩尔材料中的电子被一个形似鸡蛋盒的电势所困住;电子集中在鸡蛋盒的山谷(低能态)中。资料来源:S.Kelley/NIST在摩尔量子材料中,电子具有一系列可能的能量--高能和低能,形状就像鸡蛋盒--这是由材料的电场决定的。电子集中在纸盒的低能态或谷中。NIST理论物理学家保罗-哈尼(PaulHaney)说,双层石墨烯中的谷之间的间距很大,大于任何单层石墨烯或未扭曲的多层石墨烯中的原子间距,这也是研究小组发现的一些不寻常磁性的原因。研究人员,包括来自马里兰大学学院帕克分校和联合量子研究所(NIST与马里兰大学的合作研究机构)的同事,在《科学》杂志上介绍了他们的工作。未来前景与应用由于摩尔量子物质的特性可以通过选择特定的扭转角度和原子薄层的数量来实现,因此新的测量结果有望让人们更深入地了解科学家如何定制和优化量子材料的磁性和电子特性,以满足微电子学和相关领域的大量应用需求。例如,人们已经知道超薄超导体是非常灵敏的单光子探测器,而量子摩尔超导体则是最薄的超导体之一。NIST团队还对另一种应用感兴趣:在适当的条件下,摩尔量子物质可以提供一种新的、更易于使用的电阻标准。目前的标准是基于一种材料在二维层中的电子受到强磁场作用时产生的离散电阻值。这种现象被称为量子霍尔效应,源于上文讨论的电子在圆形轨道上的量子化能级。离散电阻值可用于校准各种电气设备中的电阻。不过,由于需要强大的磁场,校准只能在NIST等计量设施中进行。斯特里西奥说,如果研究人员能操纵量子摩尔物质,使其在没有外加磁场的情况下也能产生净磁化,那么就有可能利用它来创建一种新的便携式最精确电阻标准,即反常量子霍尔电阻标准。电子设备的校准可在制造现场进行,从而节省数百万美元。...PC版:https://www.cnbeta.com.tw/articles/soft/1388617.htm手机版:https://m.cnbeta.com.tw/view/1388617.htm

封面图片

研究发现双层石墨烯中的电子像没有质量的粒子一样运动

研究发现双层石墨烯中的电子像没有质量的粒子一样运动艺术家绘制的天然双层石墨烯中的移动电荷。资料来源:LukasKroll此外,他们还证明,电流可以"开关",这为开发微小、节能的晶体管提供了可能--就像家里的电灯开关,但却是纳米级的。美国麻省理工学院(MIT)和日本国立材料科学研究所(NIMS)也参与了这项研究。研究成果发表在科学杂志《自然通讯》上。安娜-塞勒博士。图片来源:ChristianEckel石墨烯的特性与挑战石墨烯于2004年被发现,是由单层碳原子组成的。石墨烯具有许多不寻常的特性,其中最著名的是其超高的导电性,这是因为电子在这种材料中以高速、恒定的速度穿行。这一独特的特性让科学家们梦想着利用石墨烯制造速度更快、能效更高的晶体管。所面临的挑战是,要制造出晶体管,需要控制材料在高导电状态之外还具有高绝缘状态。然而,在石墨烯中,载流子速度的这种"切换"并不容易实现。事实上,石墨烯通常没有绝缘状态,这限制了石墨烯作为晶体管的潜力。石墨烯晶体管研究取得突破性进展哥廷根大学的研究小组现在发现,自然形成的双层石墨烯中的两层石墨烯结合了两方面的优点:除了绝缘状态外,这种结构还能支持电子像光一样以惊人的速度运动,就像它们没有质量一样。研究人员发现,通过施加垂直于材料的电场,可以改变这种状况,使双层石墨烯成为绝缘体。托马斯-韦茨教授。资料来源:TWeitz快速移动电子的这一特性早在2009年就已在理论上得到预测,但由于NIMS提供的材料以及与麻省理工学院在理论方面的密切合作,样品质量显著提高,才有可能在实验中发现这一特性。虽然这些实验是在低温条件下进行的--低于冰点约273°--但它们显示了双层石墨烯制造高效晶体管的潜力。"我们早就知道这个理论。但是,现在我们已经进行了实验,实际显示了电子在双层石墨烯中类似光的分散。对于整个团队来说,这是一个非常激动人心的时刻,"哥廷根大学物理系的托马斯-韦茨教授说。哥廷根大学博士后研究员、第一作者AnnaSeiler博士补充说:"我们的工作只是迈出了关键的第一步。研究人员下一步将研究双层石墨烯是否真的能改善晶体管,或者研究这种效应在其他技术领域的潜力。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427873.htm手机版:https://m.cnbeta.com.tw/view/1427873.htm

封面图片

来自中国科学院物理研究所、国家纳米科学中心等单位的科研人员,通过研究三层石墨烯的菱形堆垛结构发现,在菱形堆垛三层石墨烯中,电子和

来自中国科学院物理研究所、国家纳米科学中心等单位的科研人员,通过研究三层石墨烯的菱形堆垛结构发现,在菱形堆垛三层石墨烯中,电子和红外声子之间具有强相互作用,这有望应用于光电调制器和光电芯片等领域。相关研究成果在线发表于《自然-通讯》杂志。据悉,这项研究为理解菱形堆垛的三层石墨烯中的超导和铁磁等物理效应提供了新的视角。同时,它也为新一代光电调制器和光电芯片的设计提供了相关材料研究的基础。(科技日报)

封面图片

通过堆叠石墨烯层实现新形式的奇特超导性

通过堆叠石墨烯层实现新形式的奇特超导性想象一下,一张只有一层原子厚的材料--不到百万分之一毫米。虽然这听起来很玄乎,但这种材料是存在的:它被称为石墨烯,是由碳原子以蜂窝状排列而成的。2004年首次合成,然后很快被誉为具有神奇特性的物质,科学家们仍在努力了解它。堆叠的石墨烯层的模拟结果。该图像描绘了所谓的贝里曲率,证实了超导性的拓扑特性。奥地利科学技术研究所(ISTA)的博士后AregGhazaryan和MaksymSerbyn教授与以色列魏茨曼科学研究所的同事TobiasHolder博士和ErezBerg教授多年来一直在研究石墨烯,现在他们在3月2日发表在《物理评论B》杂志上的一篇研究论文中发表了对其超导特性的最新发现。ABCA堆叠中的四层石墨烯。二维蜂窝状格子中的四片碳原子相互堆叠,每片都相对于下面的那片向左移位。顶层的移动幅度很大,其结构再次与底层对齐。Ghazaryan解释说:"多层石墨烯有许多有前途的品质,从广泛的可调谐带状结构和特殊的光学特性到新形式的超导性--意味着能够无阻力地传导电流。在我们的理论模型中,我们正在继续我们在多层石墨烯方面的工作,并且正在研究不同的石墨烯片相互之间的各种可能安排。在那里,我们发现了创造所谓拓扑超导性的新可能性。"在他们的研究中,研究人员在计算机上模拟了当你以某些方式将几层石墨烯片叠加在一起时会发生什么。"这就像一场大型的选美比赛,在不同配置的堆叠的石墨烯片之间找到最好的一个,"Serbyn补充说。"在其中,我们正在研究在多层石墨烯中移动的电子是如何表现的。根据不同层的石墨烯如何相互移动以及有多少层,蜂窝状晶格中的碳原子的带正电核为它们周围的电子创造了不同的环境。带负电的电子被核所吸引,并被彼此排斥。我们开始研究现实的模型,只考虑一个电子与石墨烯的原子核相互作用。一旦找到一个有希望的方法,我们就增加了许多电子之间更复杂的相互作用。通过这种方法,研究人员证实了拓扑超导性的奇特形式的发生。研究人员MaksymSerbyn和AregGhazaryan这种理论研究为未来的实验奠定了基础,这些实验将在实验室中创建模拟的石墨烯系统,观察它们是否真的像预测的那样表现。Ghazaryan说:"我们的工作有助于实验者设计新的设置,而不必尝试石墨烯层的每一种配置。现在,理论研究将继续进行,而实验将给我们提供来自大自然的反馈。"虽然石墨烯已经慢慢在研究和技术中找到了应用--例如作为碳纳米管--但其作为电力拓扑超导体的潜力才刚刚开始被了解。Serbyn补充说:"我们希望有一天能够在量子力学层面上完全描述这种材料,这既是为了科学探究物质基本特性的内在价值,也是为了石墨烯的许多潜在应用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1348503.htm手机版:https://m.cnbeta.com.tw/view/1348503.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人