欧空局拍摄到壮观的星系“舞蹈” 其中心有两个危险接近的超大质量黑洞

欧空局拍摄到壮观的星系“舞蹈”其中心有两个危险接近的超大质量黑洞据CNET报道,我们的银河系和它的宇宙“邻居”仙女座星系将在几十亿年后碰撞,合并成一个单一的星系领域。它们的恒星将并排而居;行星将彼此“相望”;卫星将“建立友谊”。尽管我们无法看到这场壮观的“表演”,但周二,与欧洲南方天文台甚大望远镜团队合作的科学家们展示了一幅图像,描绘了未来这种撞击可能出现的迷人景象。这张图片显示了一个名为NGC7727的星系。NGC7727在过去已经被成像和研究过,但是根据欧洲南方天文台研究人员的说法,这是我们第一次以如此复杂的细节看到这一现象。这个天体景观距离我们大约8900万光年,从地球的有利位置看,它就像一个飘渺的星尘漩涡,最重要的是,它是两个独立星系合二为一的结果--就像我们认为银河系注定要与仙女座合并一样。此外,由于合并形成NGC7727的星系曾经被它们自己的超大质量黑洞所固定,几个空洞联合起来潜伏在NGC7727的中心附近。根据欧空局的说法,这些引力奇迹是迄今为止发现的最接近的两个超大质量黑洞--而且它们注定要在未来合并成一个更大的黑洞。尽管两个星系的碰撞听起来很激烈,但欧空局的研究人员在一份新闻稿中说:“单独的恒星一般不会发生碰撞,因为与它们的大小相比,它们之间的距离非常大。相反,这些星系围绕着对方‘跳舞’,引力产生的潮汐力极大地改变了两个‘舞伴’的外观。”事实上,在NGC7727的上图中,你可以看到所谓的恒星、气体和尘埃的“尾巴”正在旋转。这些“尾巴”是两个星系围绕对方运行的结果,因为它们越走越近,直到它们变成了我们现在在图像中心看到的不对称的集合体星系。“我们看到了两个星系合并时产生的纠结痕迹,它们互相剥离了恒星和尘埃,形成了拥抱NGC7727的壮观的旋臂。这些旋臂的一部分点缀着恒星,它们在这张图片中显示为明亮的蓝紫色斑点,”欧空局说。关于NGC7727的双黑洞情况,如果你看一下图像的最中心,你可以看到两个非常明亮的点。每个点代表一个黑洞,在下面的图片中可以看到这种“相遇”的特写。它们之间的距离只有1600光年,这在宇宙范围内是令人难以置信的,而且预计它们将在大约2.5亿年后发生碰撞,从宇宙的角度来看是非常快的。当这种情况最终发生时,这种碰撞将在空间和时间结构中激起涟漪--正如爱因斯坦的广义相对论所说的那样。也许当银河系与仙女座融为一体时,也会有类似的故事发生。我们知道我们的母星系有一个自己的黑洞,叫做人马座A,而仙女座被认为也有一个中等大小的空洞。PC版:https://www.cnbeta.com/articles/soft/1305705.htm手机版:https://m.cnbeta.com/view/1305705.htm

相关推荐

封面图片

科学家在矮星系中发现被甩出家园的超大质量黑洞

科学家在矮星系中发现被甩出家园的超大质量黑洞虽然这个想法可能看起来像科幻小说,但这正是科学家认为在距离地球75亿光年的一个矮星系中发生的事情。他们认为,现在一个无赖的超大质量黑洞来自这个星系,在一次星系合并使两个超大质量黑洞靠得太近之后,被踢出了原来的位置。这是一个耐人寻味的发现,但我们还没有谈到的是,要想成为一个流动的超大质量黑洞需要什么。一个黑洞究竟是如何获得足够的动量来被踢出其母星系的?一组研究人员在一篇预先发表的论文中分解了这一发现,目前可在arXiv上查阅。黑洞可以合并,甚至在星系合并后将对方踢出其母星系。图片来源:美国宇航局戈达德太空飞行中心/YouTube当具有一定规模的星系合并时,它们很可能各自拥有自己的超大质量黑洞。因此,这些黑洞就会在某个地方相遇。通常情况下,这些黑洞会被彼此吸引,互相环绕,有时黑洞会自己合并。当它们靠近时,残余的黑洞通常会得到一个相当于地球绕着我们太阳运行的速度的踢力。通常情况下,这个速度不足以使超大质量黑洞脱离其轨道,并使其跑入星际空间。通常情况下,合并会导致几十公里的踢力击中残余的黑洞,使其位置发生非常小的变化。但是,如果满足正确的条件,这一脚可以变成一脚“世界波”,从它的母星系中被弹出,形成一个在空间中游荡超大质量黑洞。残余黑洞受到的冲击不是那些典型的几十公里,而是以每秒几千公里的速度移动,大约是光速的百分之一到二。在这种速度下,这个流氓超大质量黑洞完全可以摆脱其母星系的引力。更为可怕的是,科学家们认为可能有超过50万个类似这样的超大质量黑洞从它们的家园中被弹出,在星际空间中盘旋。当然,这个数字都是理论上的,更多关于这些失控黑洞的发现可能有助于巩固我们所掌握的数据。...PC版:https://www.cnbeta.com.tw/articles/soft/1350739.htm手机版:https://m.cnbeta.com.tw/view/1350739.htm

封面图片

美国宇航局追踪碰撞过程中的超大质量黑洞

美国宇航局追踪碰撞过程中的超大质量黑洞根据定义,矮星系包含总质量小于30亿个太阳的恒星--或比银河系小20倍左右。天文学家长期以来一直怀疑,矮星系会进行合并,特别是在相对早期的宇宙中,以便成长为今天看到的较大的星系。然而,目前的技术无法观测到第一代矮星系的合并,因为它们在遥远的距离上异常微弱。另一种策略是寻找更近的矮星系合并,但到目前为止还没有成功。这项新的研究克服了这些挑战,通过对钱德拉X射线深层观测进行系统调查,并将其与来自美国宇航局的宽红外测量探测器(WISE)的红外数据和来自加拿大-法国-夏威夷望远镜(CFHT)的光学数据相比较。钱德拉对这项研究特别有价值,因为黑洞周围的物质可以被加热到数百万度,产生大量的X射线。研究小组在碰撞的矮星系中寻找一对明亮的X射线源作为两个黑洞的证据,并发现了两个例子。用钱德拉发现了矮星系中两对处于碰撞过程中的超大质量黑洞的证据。这两对黑洞在钱德拉的X射线和加拿大-法国-夏威夷望远镜的光学光线下显示。左边的合并处于后期阶段,被赋予了Mirabilis这个单一的名字。另一个合并处于早期阶段,两个矮星系被命名为Elstir(底部)和Vinteuil(顶部)。天文学家认为,矮星系--那些质量比银河系小20倍左右的星系--通过与其他星系的合并而成长。这是早期宇宙中星系生长的一个重要过程,这一发现为科学家提供了更详细的研究实例。其中一对位于距离地球7.6亿光年的Abell133星系团中,在左边的合成图中看到。粉红色的是钱德拉X射线数据,蓝色的是来自CFHT的光学数据。这对矮星系似乎处于合并的后期阶段,并显示出一个由碰撞产生的潮汐效应造成的长尾。这项新研究的作者给它起了个绰号叫"Mirabilis",这是根据一种以特别长的尾巴而闻名的蜂鸟的濒危物种。只选择了一个名字,因为两个星系合并成一个星系的过程几乎已经完成。这两个钱德拉源显示了来自每个星系中黑洞周围物质的X射线。Mirabilis的X射线和光学合成另一对是在Abell1758S发现的,这是一个大约32亿光年外的星系团。右边是来自钱德拉和CFHT的合成图像,使用的颜色与Mirabilis的相同。研究人员给合并的矮星系起了个绰号"Elstir"和"Vinteuil",以MarcelProust的《寻找逝去的时光》中虚构的艺术家命名。Vinteuil是在上面的星系,Elstir是在下面的星系。这两个星系都有与之相关的钱德拉源,同样来自每个星系中黑洞周围物质的X射线。研究人员认为这两个星系已经陷入了合并的早期阶段,导致两个碰撞的星系在引力作用下形成了一座由恒星和气体组成的桥梁。Elstir&Vinteuil的X射线和光学合成图合并的黑洞和矮星系的细节可能为我们了解银河系自己的过去提供启示。科学家们认为,几乎所有的星系都是从矮星系或其他类型的小星系开始的,并在数十亿年的时间里通过合并而成长。对这两个系统的后续观测将使天文学家能够研究对了解宇宙最早阶段的星系及其黑洞至关重要的过程。...PC版:https://www.cnbeta.com.tw/articles/soft/1349871.htm手机版:https://m.cnbeta.com.tw/view/1349871.htm

封面图片

宇宙碰撞:带有巨大黑洞的矮星系揭开了早期宇宙的秘密

宇宙碰撞:带有巨大黑洞的矮星系揭开了早期宇宙的秘密科学家们认为,宇宙在大爆炸后的几亿年里充斥着小型星系,被称为"矮星系"。大多数星系在早期宇宙的拥挤、较小的体积中与其他星系合并,启动了现在在附近宇宙中看到的越来越大的星系的建造过程。根据定义,矮星系包含总质量小于太阳30亿倍的恒星,而银河系的总质量估计约为600亿个太阳。最早的矮星系是不可能用目前的技术来观测的,因为它们在很远的距离上是非常微弱的。天文学家已经能够在距离地球更近的地方观察到两个正在合并的星系,但两个星系都没有黑洞的迹象。领导这项研究的阿拉巴马大学塔斯卡卢萨分校的MarkoMicic说:"天文学家已经在相对较近的大星系中发现了许多黑洞碰撞的例子。但是在矮星系中寻找它们的挑战要大得多,直到现在还没有成功。"Mirabilis的X射线和光学合成图。这项新的研究克服了这些挑战,通过对钱德拉X射线深层观测进行系统调查,并将其与来自美国宇航局的宽红外测量探测器(WISE)的红外数据和来自加拿大-法国-夏威夷望远镜(CFHT)的光学数据进行比较。钱德拉对这项研究特别有价值,因为黑洞周围的物质可以被加热到数百万度,产生大量的X射线。研究小组在碰撞的矮星系中寻找成对的明亮X射线源作为两个黑洞的证据,并发现了两个例子。"我们已经在碰撞的矮星系中确定了第一对不同的黑洞,"共同作者OliviaHolmes说,他也来自阿拉巴马大学塔斯卡卢萨分校。"利用这些系统作为早期宇宙中的类似物,我们可以深入研究关于第一批星系、它们的黑洞以及碰撞所导致的星体形成的问题。"Elstir&Vinteuil的X射线和光学合成。一对位于距离地球7.6亿光年的Abell133星系团中,另一组在Abell1758S星系团中,它距离地球约32亿光年。这两对星系都显示出结构,是星系碰撞的特征迹象。位于Abell133的这对星系似乎处于两个矮星系合并的后期阶段,并显示出一个由碰撞产生的潮汐效应造成的长尾。这项新研究的作者给它起了个绰号叫"Mirabilis",这是根据一种以特别长的尾巴著称的濒危蜂鸟的名字。只选择了一个名字,因为两个星系合并成一个星系的过程几乎已经完成。在Abell1758S中,研究人员给合并的矮星系起了个绰号"Elstir"和"Venteuil",这是以MarcelProust的《寻找逝去的时光》中的虚构艺术家命名的。研究人员认为这两个已经陷入了合并的早期阶段,导致星星和气体的桥梁连接两个碰撞的星系。合并的黑洞和矮星系的细节可能为我们的银河系自身的过去提供启示。科学家们认为几乎所有的星系都是从矮星系或其他类型的小星系开始的,并在数十亿年中通过合并而成长。共同作者、阿拉巴马大学塔斯卡卢萨分校的布伦娜-韦尔斯说:"早期宇宙中的大多数矮星系和黑洞到现在可能已经变大了,这要归功于反复的合并。在某些方面,矮星系是我们的星系祖先,经过数十亿年的演变,产生了像我们自己的银河系这样的大星系。""对这两个系统的后续观测将使我们能够研究对理解星系及其黑洞的婴儿至关重要的过程,"共同作者JimmyIrwin说,他也来自阿拉巴马大学塔斯卡卢萨分校。...PC版:https://www.cnbeta.com.tw/articles/soft/1354087.htm手机版:https://m.cnbeta.com.tw/view/1354087.htm

封面图片

韦伯发现带有大质量黑洞的早期星系 曾被认为是不可能存在的

韦伯发现带有大质量黑洞的早期星系曾被认为是不可能存在的恒星形成率和黑洞增长随着红移的减小而发生的转变,从正反馈占主导地位的时期到后期反馈基本为负的时期这架望远镜的红外探测"眼睛"发现了一系列红色小点,它们被确认为宇宙中最早形成的星系。这一惊人的发现不仅仅是一个视觉奇迹,它还是一条线索,可以揭开星系及其神秘黑洞如何开始宇宙之旅的秘密。"詹姆斯-韦伯的惊人发现是,宇宙中不仅有这些非常紧凑的红外明亮天体,而且它们很可能是已经存在巨大黑洞的区域,"JILA研究员、科罗拉多大学博尔德分校天体物理学教授米奇-贝格尔曼解释说。"这被认为是不可能的"。贝格尔曼和包括约翰-霍普金斯大学天文学教授乔-希尔克在内的其他天文学家组成的研究小组在《天体物理学杂志通讯》上发表了他们的发现,认为需要新的星系生成理论来解释这些巨大黑洞的存在。这项可能具有开创性的研究的第一作者西尔克阐述说:"需要一些新的东西来协调星系形成理论与新数据之间的关系。"星系形成的传统故事天文学家以前在思考星系是如何形成的时候,曾假定星系是一种有序的演化过程。传统理论认为,星系是在数十亿年的时间里逐渐形成的。在这种缓慢的宇宙演化过程中,恒星被认为首先出现,照亮了原始的黑暗。贝格尔曼补充说:"我们的想法是,从早期的恒星到星系真正成为以恒星为主的星系。然后,在这个过程的末期开始形成这些黑洞。"这些神秘而强大的超大质量黑洞被认为出现在第一批恒星之后,静静地生长在银河系的核心。它们被视为调节器,偶尔会突然爆发,以抑制新恒星的形成,从而维持银河系的平衡。挑战传统智慧得益于JWST对"小红点"的观测,研究人员发现宇宙中最早的星系比预期的要明亮,因为许多星系显示恒星与被称为类星体的中心黑洞共存。"类星体是宇宙中最亮的天体,"西尔克解释说。"它们是气体吸积到星系核中的大质量黑洞上的产物,产生巨大的光度,比它们的宿主星系还要耀眼。它们就像布谷鸟巢中的怪兽。"看到恒星与黑洞共存,研究人员很快意识到,传统的星系形成理论肯定有缺陷。贝格尔曼说:"[这些新数据]看起来[过程]是相反的,这些黑洞与第一批恒星一起形成,然后星系的其他部分随之形成。"我们的意思是说,黑洞的生长一开始会促进恒星的生长。只有到了后来,当条件发生变化时,它才会转变为关闭恒星的模式。"从这一拟议的新过程中,研究人员发现恒星形成和黑洞形成之间的关系似乎比预期的更密切,因为两者最初都通过一种被称为正反馈的过程放大了对方的增长。希尔克说:"恒星的形成加速了大质量黑洞的形成,反之亦然,暴力、诞生和死亡之间的相互作用密不可分,这是星系形成的新航标。"然后,经过将近10亿年的时间,孕育巨星的星系变得具有压制性,耗尽了星系中的气体库,熄灭了恒星的形成。这种"负反馈"是由于能量守恒的外流--强大的风把气体赶出了星系,使它们失去了创造新恒星所需的物质。新银河系时间轴有了黑洞哺育行为的启示,研究人员为早期星系形成过程中从正反馈到负反馈的转变提出了一个新的时间表。通过观察这些"小红点"发出的不同光谱和化学特征,研究人员认为这种转变发生在大约130亿年前,即宇宙大爆炸后10亿年,天文学家将这一时期归类为"z≈6"。确定这一过渡纪元有助于天文学家瞄准宇宙历史上的特定时期进行观测。它可以指导未来的观测策略,利用JWST等望远镜更有效地研究早期宇宙。此外,通过了解这一转变发生的时间,天文学家可以更好地理解现代星系的特征,包括大小、形状、恒星组成和活动水平。验证新工艺为了验证恒星和黑洞之间协同形成星系的新理论,并进一步深入了解其中的过程,需要进行计算机模拟。贝格尔曼说:"这需要一些时间。目前的计算机模拟相当原始,你需要高分辨率来了解一切。这需要大量的计算能力,而且价格昂贵。"在此之前,天文学界还可以采取其他措施来审查和验证这一新理论。下一步的工作将是改进观测。JWST研究最遥远星系光谱的全部能力将在未来几年内释放出来。贝格尔曼和西尔克都对他们领域的其他成员采用他们提出的想法表示乐观。贝格尔曼补充说:"据我所知,我们是第一个朝着这个极端方向前进的人。多年来,我和我的合作者们一直在研究黑洞的形成问题。但JWST让我们看到,我们还没有跳出框框。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424585.htm手机版:https://m.cnbeta.com.tw/view/1424585.htm

封面图片

哈勃望远镜捕捉到一个拥有贪婪黑洞的高能量星系

哈勃望远镜捕捉到一个拥有贪婪黑洞的高能量星系访问:Saily-使用eSIM实现手机全球数据漫游安全可靠源自NordVPN这张美国宇航局哈勃太空望远镜拍摄的照片显示的是距地球大约5000万光年的螺旋星系NGC4951。图片来源:NASA、ESA和D.Thilker(约翰霍普金斯大学);图片处理:GladysKober(NASA/美国天主教大学):GladysKober(美国国家航空航天局/美国天主教大学)NGC4951位于室女座,距离地球大约5000万光年。它被归类为塞弗特星系,这意味着它是一种能量极高的星系,有一个活跃的星系核(AGN)。不过,塞弗特星系与其他类型的AGN不同,因为我们仍然可以清楚地看到星系本身--不同类型的AGN是如此明亮,以至于几乎不可能观测到它们所在的实际星系。像NGC4951这样的AGN由超大质量黑洞驱动。当物质旋入黑洞时,会产生整个电磁波谱的辐射,使AGN发出耀眼的光芒。哈勃望远镜帮助证明了宇宙中几乎每个星系的核心都存在超大质量黑洞。在这架望远镜于1990年发射进入低地球轨道之前,天文学家们只是从理论上推测它们的存在。这次任务通过观测黑洞不可否认的影响,如从黑洞喷射出的物质喷流和围绕黑洞高速旋转的气体和尘埃盘,验证了它们的存在。对NGC4951进行的这些观测为天文学家研究星系的演化过程提供了宝贵的数据,其中特别关注恒星的形成过程。哈勃收集到的这些信息正与詹姆斯-韦伯太空望远镜(JWST)的观测数据相结合,以支持JWSTTreasury计划。Treasury计划收集的观测数据侧重于利用单一、连贯的数据集解决多个科学问题的潜力,并促成各种引人注目的科学调查。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430340.htm手机版:https://m.cnbeta.com.tw/view/1430340.htm

封面图片

哈勃捕捉到壮观的牧夫座三重星系系碰撞过程

哈勃捕捉到壮观的牧夫座三重星系系碰撞过程哈勃太空望远镜拍摄到的这张图片显示了牧夫座中合并的星系。资料来源:欧空局/哈勃和美国国家航空航天局,M.Sun这个相撞的星系组合被天文学家称为SDSSCGB10189--是一个相对罕见的组合,三个大型恒星形成的星系彼此之间的距离只有50000光年。虽然这听起来像是一个安全的距离,但是对于星系来说,这使得它们成为了极其亲密的邻居。我们自己的星系邻居也是如此,如果仙女座星系与银河系发生碰撞,两个星系将在大约七十亿年后最终合并为一个更大的椭圆星系。但相对而言距离要远得多,离银河系最近的仙女座星系距离地球超过250万光年。这项观测旨在帮助天文学家了解宇宙中最大、质量最大的星系的起源。这些星系庞然大物被称为最亮星系团(BCG),而且--顾名思义--被定义为任何特定星系团中最亮的星系。天文学家怀疑,BCG是通过合并大型的、富含气体的星系而形成的,就像这张图片中的星系。他们求助于哈勃的宽视场相机3(WFC3)和高级勘测相机(ACS),对这个星系三重奏进行了细致的研究,希望能够揭示出宇宙中最大质量的星系的形成。...PC版:https://www.cnbeta.com.tw/articles/soft/1344077.htm手机版:https://m.cnbeta.com.tw/view/1344077.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人