物理学家正在揭开“时间箭头”的谜团

物理学家正在揭开“时间箭头”的谜团理论物理学家的一项新研究在确定粒子和细胞如何产生大规模动态方面取得了进展,我们将其视为时间的流逝。我们如何体验世界的一个核心特征是时间从过去流向未来。但是,这个被称为“时间箭头”(Arrowoftime)的现象是如何从粒子和细胞之间的微观互动中产生的,却是一个谜。纽约市立大学研究生中心理论科学倡议(ITS)的研究人员在《物理评论快报》杂志上发表了一篇新的论文,正在帮助揭开这个谜团。这些发现可能对广泛的学科产生重要影响,包括物理学、神经科学和生物学。从根本上说,“时间箭头”产生于热力学第二定律。这是物理系统的微观排列趋向于增加随机性的原则,从有序到无序。一个系统变得越无序,它就越难找到回到有序状态的方法,“时间箭头”也就越强。简而言之,宇宙的无序倾向是我们体验到时间朝一个方向流动的根本原因。“我们团队的两个问题是,如果我们观察一个特定的系统,我们是否能够量化其时间箭头的强度,以及我们是否能够理清它是如何从细胞和神经元相互作用的微观尺度出现在整个系统中的?”ITS项目的博士后和该论文的第一作者ChristopherLynn说。“我们的发现为理解我们在日常生活中体验到的时间箭头是如何从这些更微观的细节中出现的提供了第一步。”为了开始回答这些问题,物理学家们探索了如何通过观察一个系统的特定部分和它们之间的相互作用来分解时间箭头。例如,这些部分可以是在视网膜内运作的神经元。观察一个单一的时刻,他们表明“时间箭头”可以被分解成不同的部分:那些由单独工作的部分、成对工作的部分、三合一工作的部分或更复杂的配置产生的部分。有了这种分解“时间箭头”的方法,科学家们分析了关于蝾螈视网膜中的神经元对不同电影的反应的现有实验。在一部电影中,一个物体在屏幕上随机移动,而另一部电影则描绘了自然界中的全部复杂场景。在这两部电影中,研究小组发现,“时间箭头”出现在成对的神经元之间的简单互动中,而不是大型的、复杂的群体。令人惊讶的是,研究人员还观察到,在观看随机运动时,视网膜显示的“时间箭头”比自然场景更强。Lynn说,这后一个发现提出了关于我们对“时间箭头”的内部感知如何与外部世界保持一致的问题。Lynn表示:“这些结果可能会引起神经科学研究人员的特别兴趣。例如,它们可能会导致关于时间箭头在神经类型的大脑中是否有不同功能的答案。”该研究的主要研究者、研究生中心的物理学和生物学教授DavidSchwab说:“Chris对局部不可逆性的分解--也被称为时间箭头--是一个优雅、通用的框架,可能为探索许多高维、非平衡系统提供一个新视角。”...PC版:https://www.cnbeta.com/articles/soft/1308219.htm手机版:https://m.cnbeta.com/view/1308219.htm

相关推荐

封面图片

天体物理学家揭开奇异熔岩世界的神秘面纱

天体物理学家揭开奇异熔岩世界的神秘面纱熔融海洋的影响现在,科学家们在一项新的研究中表明,这些广阔的熔融海洋对观测到的热岩石超级地球的特性有很大的影响,比如它们的大小和进化路径。他们最近发表在《天体物理学杂志》上的研究发现,由于熔岩具有极强的可压缩性,岩浆海洋会导致富含熔岩且没有大气层的行星比类似大小的固态行星密度略高,并影响它们的地幔(即环绕行星核心的厚内层)结构。基尔斯滕-博利(KierstenBoley)说,即便如此,由于对这些天体的研究出了名的不足,要描述熔岩行星的基本运作是一项艰巨的任务。她是这项研究的第一作者,也是俄亥俄州立大学的一名天文学研究生。探测与理解博利说:"熔岩世界是非常奇特、非常有趣的东西,由于我们探测系外行星的方式,我们更偏向于发现它们。"她的研究围绕着理解系外行星独特的基本成分,以及如何调整这些元素,或者在熔岩世界的情况下,调整它们的温度,可以完全改变它们。在这些神秘的燃烧世界中,最著名的一颗是巨蟹座55号,这是一颗距离我们约41光年的系外行星,科学家们称它既有波光粼粼的天空,也有汹涌澎湃的熔岩海。虽然太阳系中也有一些天体,比如木星的卫星木卫一,火山活动非常活跃,但在我们的宇宙空间中,还没有真正的熔岩行星可以让科学家们近距离研究。不过,研究岩浆海洋的成分如何促进其他行星的演化,比如它们保持熔融状态的时间长短以及最终冷却的原因,可以为了解地球自身的炽热历史提供线索,博利说。"当行星最初形成时,尤其是岩质陆地行星,它们在冷却过程中会经历一个岩浆海洋阶段。因此,熔岩世界可以让我们了解几乎所有陆地行星的演化过程。"研究技术和发现研究人员利用系外行星内部建模软件Exoplex和从以前的研究中收集到的数据构建了一个包含几种岩浆成分信息的模块,模拟了类似地球的行星的几种进化情况,其表面温度在2600到3860华氏度之间--这是行星的固态地幔变成液态的熔点。研究小组从他们创建的模型中发现,岩浆洋行星的地幔有三种形式:第一种是整个地幔完全熔化,第二种是地表有岩浆洋,第三种是三明治式的模型,即地表有岩浆洋,中间是固体岩石层,另一层是最靠近行星核心的熔融岩浆层。研究结果表明,第二种和第三种形式的行星比完全熔融的行星更常见。根据岩浆海洋的成分,一些无大气层的系外行星比其他行星更善于捕获挥发性元素--形成早期大气层所必需的氧和碳等化合物--达数十亿年之久。例如,该研究指出,一颗质量比地球大4倍的基底岩浆类行星能够捕获的水的质量是目前地球海洋的130多倍,是目前该行星表面和地壳中碳含量的约1000倍。博利说:"当我们讨论一颗行星的进化及其拥有支持生命所需的不同元素的潜力时,能够在其外壳中捕获大量挥发性元素可能会对宜居性产生更大的影响。"对宜居性的影响和未来研究熔岩行星距离适宜居住以支持生命还有很长的路要走,但了解帮助这些世界达到这一目标的过程非常重要。然而,这项研究清楚地表明,在将这些世界与固态系外行星进行比较时,测量它们的密度并不是描述这些世界特征的最佳方法,因为岩浆海洋既不会显著增加也不会降低行星的密度,博利说。相反,他们的研究表明,科学家们应该关注其他地球参数,比如行星表面重力的波动,以检验他们关于热熔岩世界如何运行的理论,尤其是如果未来的研究人员计划利用他们的数据来帮助更大规模的行星研究的话。这项工作是地球科学和天文学的结合,基本上开启了有关熔岩世界的令人兴奋的新问题。...PC版:https://www.cnbeta.com.tw/articles/soft/1387293.htm手机版:https://m.cnbeta.com.tw/view/1387293.htm

封面图片

物理学家揭开宇宙中的反物质之谜

物理学家揭开宇宙中的反物质之谜宇宙在其存在的早期,即大爆炸后不久,充满了同等数量的物质和“反物质”--作为物质的对应物但具有相反电荷的粒子。然后,随着空间的扩张,宇宙冷却了。今天的宇宙充满了基于物质的星系和恒星。物质是如何在宇宙中占主导地位的,反物质又去了哪里?科学家们仍然对物质的宇宙起源感到疑惑。PC版:https://www.cnbeta.com/articles/soft/1327319.htm手机版:https://m.cnbeta.com/view/1327319.htm

封面图片

物理学家在实验室中创造了微小的太阳耀斑

物理学家在实验室中创造了微小的太阳耀斑但是,你可能会问自己,为什么会有人想要重现这些强大的辐射能量爆发呢?这个想法是为了给我们一个更好的方法来研究太阳耀斑是如何产生的。研究人员可以通过在实验室中直接制造微小的太阳耀斑来更仔细地检查它们。该团队在论文中解释说:"太阳观测发现了高能粒子和硬X射线,但不能揭示其产生机制,因为粒子加速发生的规模小于观测分辨率。"欧空局的一段视频记录了当太阳爆发从我们的恒星表面突起时,水星正在穿越太阳。图片来源:欧空局和美国宇航局/太阳轨道器/EUI团队因为规模太小,所以不可能研究使产生这种粒子和硬X射线的物理学细节。然而,使用实验室实验来制造微小的耀斑,给了科学家一个更好的方法来观察这种发生。考虑到太阳本质上是一个能量和等离子体的沸腾球,它释放出像太阳耀斑这样的巨大能量爆发并不奇怪,尤其是在其更活跃的时期。而我们在地球上经常体验到这些爆发的影响,即电磁风暴。了解这些耀斑是如何产生的,可以帮助我们更好地判断太阳耀斑的形成时间,使我们能够更精确地预测太阳耀斑。预测这些爆发何时发生可以帮助我们为它们做更多准备。这就是为什么这项新实验是如此重要的原因。论文详细介绍了物理学家们在尝试在实验室内创造这些更小的太阳耀斑时的发现:当然,未来对我们太阳的研究将更多地揭示这一过程。不过,就目前而言,这些物理学家所发现的似乎与我们已经观察到的断裂和重新连接相一致。...PC版:https://www.cnbeta.com.tw/articles/soft/1354683.htm手机版:https://m.cnbeta.com.tw/view/1354683.htm

封面图片

物理学家创建了环形黑洞的新模型

物理学家创建了环形黑洞的新模型黑洞是空间中引力非常强大的区域,以至于没有任何东西,甚至是光,可以逃脱其牵引。它们是由大质量恒星的残余物形成的,这些恒星已经坍缩到自己身上了。基夫-米特曼说:"非线性效应是海滩上的波峰和碰撞时发生的情况。"他是加州理工学院的研究生,与索尔-特科尔斯基(74年博士)一起工作,后者是加州理工学院理论天体物理学的罗宾逊教授,在康奈尔大学有一个联合任命。"这些波相互作用,相互影响,而不是自己骑行。对于像黑洞合并这样剧烈的事情,我们预计会有这些影响,但直到现在才在模型中看到它们。从我们的模拟中提取波形的新方法使我们有可能看到这些非线性。"发表在《物理评论快报》杂志上的这项研究来自于加州理工学院、哥伦比亚大学、密西西比大学、康奈尔大学和马克斯-普朗克引力物理研究所的一个研究小组。加州理工学院研究生KeefeMitman解释了一个包含非线性引力效应的黑洞碰撞的新数学模型--他把这种现象比作两个人在蹦床上狂跳时发生的情况。在未来,这个新模型可以用来了解实际的黑洞碰撞,自从LIGO(激光干涉仪引力波观测站)在2015年创造历史,首次从太空直接探测到引力波以来,LIGO就一直在例行观测。LIGO将在今年晚些时候重新开启,在此之前,LIGO将获得一组升级,使探测器对引力波比以前更加敏感。米特曼和他的同事是一个名为"模拟极端空间合作"(SXS)的团队的成员。SXS项目由Teukolsky和诺贝尔奖获得者KipThorne(BS'62)合作创立,他是加州理工学院理论物理学名誉教授RichardP.Feynman,该项目使用超级计算机来模拟黑洞合并。超级计算机利用爱因斯坦的广义相对论的方程模拟黑洞如何在一起螺旋式地演化和合并。事实上,Teukolsky是第一个了解如何使用这些相对论方程来模拟黑洞碰撞的"下降"阶段的人,这个阶段就发生在两个大质量物体合并之后。"需要超级计算机来进行整个信号的精确计算:两个轨道上的黑洞的吸入,它们的合并,以及沉降到一个单一的静止残余黑洞,"Teukolsky说。"对沉降阶段的线性处理是我不久前在基普手下的博士论文的主题。对这一阶段的新的非线性处理将允许对电波进行更精确的建模,并最终对广义相对论是否事实上是黑洞的正确引力理论进行新的测试。"事实证明,SXS模拟在识别和描述LIGO迄今为止探测到的近100个黑洞粉碎方面发挥了作用。这项新的研究代表了该团队首次在模拟环流阶段的过程中发现了非线性效应。"想象一下,在一个蹦床上有两个人,"米特曼说。"如果他们轻轻地跳,他们不应该影响另一个人那么多。这就是我们说一个理论是线性的时候所发生的事情。但是如果一个人开始用更多的能量弹跳,那么蹦床就会扭曲,另一个人就会开始感受到他们的影响。这就是我们所说的非线性:蹦床上的两个人因为另一个人的存在和影响而经历新的振荡。"在引力方面,这意味着模拟产生了新类型的波。"如果你在大波之下深入挖掘,你会发现另外一种具有独特频率的新波,"米特曼说。从大的方面来看,这些新的模拟将帮助研究人员更好地描述LIGO所观测到的未来黑洞碰撞的特征,并更好地测试爱因斯坦的广义相对论。合著者、哥伦比亚大学的MacarenaLagos说:"这是我们为下一阶段的引力波探测做准备的一大步,这将加深我们对发生在宇宙远处的这些不可思议的现象中的引力的理解"。...PC版:https://www.cnbeta.com.tw/articles/soft/1349313.htm手机版:https://m.cnbeta.com.tw/view/1349313.htm

封面图片

物理学家解开了准晶体形成之谜

物理学家解开了准晶体形成之谜一个由不同大小的环组成的子结构将自己无缝嵌入到一个六边形结构中。资料来源:马丁路德大学哈雷-维滕贝格分校他们的研究解决了从金属氧化物中形成二维准晶体的奥秘,最近发表在《自然通讯》杂志上。"六角形在自然界中经常被发现。最著名的例子是蜂窝,但石墨烯或各种金属氧化物,如氧化钛也形成这种结构。六边形是周期性排列的理想模式,"MLU物理研究所表面和界面物理组的研究员StefanFörster博士解释说。"它们如此完美地结合在一起,没有任何缝隙。"2013年,该小组在铂金基底上沉积了一个含有氧化钛和钡的超薄层,并在超高真空中加热到约1000摄氏度时,有了一个惊人的发现。原子排列成三角形、正方形和菱形,这些三角形、正方形和菱形组合成甚至更大的具有12条边的对称形状。一个具有12倍旋转对称性的结构被创造出来,而不是预期的6倍周期性。根据福斯特的说法,"准晶体被创造出来,具有非周期性的结构。这种结构是由高度有序的基本原子团组成的,即使这种有序性背后的系统性对观察者来说是难以辨别的。"来自哈雷的物理学家们是世界上第一个证明在金属氧化物中形成二维准晶体的人。自他们发现以来,这种准晶体的形成机制仍然令人费解。MLU的物理学家现在与来自哈雷马克斯-普朗克微结构物理研究所、格勒诺布尔-阿尔卑斯大学和美国国家标准与技术研究所(美国盖瑟斯堡)的研究人员合作,解决了这个谜题。利用精心设计的实验、高能计算和高分辨率显微镜,他们表明,高温和钡的存在创造了一个分别有四个、七个和十个原子的钛和氧环的网络。"钡既打破了原子环,又稳定了它们,"领导该联合项目的Förster解释说。"一个钡原子嵌入一个七原子环中,两个嵌入一个十原子环中"。这是可能的,因为钡原子与铂金支撑物发生静电作用,但不与钛原子或氧原子形成化学键。通过他们的最新发现,研究人员所做的不仅仅是澄清了一个基本的物理学问题。Förster说:"现在我们对原子层面的形成机制有了更好的理解,我们可以尝试在其他与应用相关的材料(如金属氧化物或石墨烯)中按需制造这种二维准晶体。我们很高兴能够了解这种特殊的排列方式是否会产生全新的、有用的特性"。这些实验是作为"超周期晶体:结构、动力学和电子特性"项目的一部分进行的,该项目由德国研究基金会和法国国家研究机构资助。...PC版:https://www.cnbeta.com.tw/articles/soft/1345975.htm手机版:https://m.cnbeta.com.tw/view/1345975.htm

封面图片

物理学家成功连接了两个量子物理学的子领域

物理学家成功连接了两个量子物理学的子领域莱斯大学的物理学家已经证明,量子计算所高度追求的不可变拓扑态可以与某些材料中其他可操纵的量子态纠缠在一起。“我们发现令人惊讶的事情是,在一种特殊的晶格中,电子被困住,d原子轨道中电子的强耦合行为实际上就像一些重费米子的f轨道系统一样,”《科学进展》相关研究报告的作者说。这一意想不到的发现为凝聚态物理学的子领域之间架起了一座桥梁,这些子领域专注于量子材料的不同涌现特性。例如,在拓扑材料中,量子纠缠模式产生“受保护的”、不可变的状态,可用于量子计算和自旋电子学。在强关联材料中,数十亿个电子的纠缠会产生非常规超导性和量子自旋液体中持续磁涨落等行为。在这项研究中,斯奇苗和合著者胡浩宇(他的研究小组的前研究生)建立并测试了一个量子模型,以探索“受挫”晶格排列中的电子耦合,就像在具有“平带”特征的金属和半金属中发现的电子耦合,表明电子被卡住并且强相关效应被放大。斯奇苗是莱斯大学物理和天文学HarryC.和OlgaK.Wiess教授,也是莱斯大学量子材料中心主任。图片来源:JeffFitlow/莱斯大学这项研究是斯奇苗持续努力的一部分,他于7月获得了美国国防部著名的万尼瓦尔·布什教员奖学金,以验证控制物质拓扑状态的理论框架。在这项研究中,斯奇苗和胡浩宇表明,来自d原子轨道的电子可以成为晶格中多个原子共享的更大分子轨道的一部分。研究还表明,分子轨道中的电子可能与其他受挫电子纠缠在一起,产生强相关效应,这对于多年来研究重费米子材料的Si来说非常熟悉。“这些完全是d电子系统,”斯奇苗说。“在d电子世界中,就像有一条多车道的高速公路。在f电子世界中,您可以认为电子在两层中移动。一种就像d电子高速公路,另一种就像土路,移动速度非常慢。”Si表示,f电子系统拥有非常清晰的强相关物理例子,但它们并不适合日常使用。“这条土路距离高速公路太远了,”他说。“高速公路的影响非常小,这意味着微小的能量尺度和非常低的物理温度。这意味着需要达到10开尔文左右的温度才能看到耦合的效果。在d电子世界中情况并非如此。在多车道高速公路上,事物之间的耦合非常有效。”即使频带平坦,耦合效率仍然存在。斯将其比作高速公路的一条车道变得像f电子土路一样低效且缓慢。“即使它已经变成了土路,它仍然与其他车道共享地位,因为它们都来自d轨道,”斯说。“它实际上是一条土路,但它的耦合性更强,这转化为更高温度下的物理现象。这意味着我可以拥有所有基于f电子的精致物理学,为此我拥有明确定义的模型和多年研究的大量直觉,但我不必达到10开尔文,而是可以工作例如,200开尔文,甚至可能是300开尔文,或室温。因此,从功能角度来看,它非常有前途。”...PC版:https://www.cnbeta.com.tw/articles/soft/1389679.htm手机版:https://m.cnbeta.com.tw/view/1389679.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人