MIT科学家正在寻找利用DNA将CO2转化为有价值产品的方法

MIT科学家正在寻找利用DNA将CO2转化为有价值产品的方法二氧化碳(CO2)是许多人类活动的重要产物--包括工业制造。另外,它也是导致气候变化的主要因素。因此,能源领域的一个主要目标是将排放的二氧化碳化学地转化为燃料或其他有价值的化学品。PC版:https://www.cnbeta.com/articles/soft/1317513.htm手机版:https://m.cnbeta.com/view/1317513.htm

相关推荐

封面图片

剑桥科学家发明太阳能反应堆 可将塑料垃圾和二氧化碳转化为有用化学品

剑桥科学家发明太阳能反应堆可将塑料垃圾和二氧化碳转化为有用化学品就在六个月前,剑桥团队公布了他们的太阳能反应堆的一个版本。它由两个腔室组成,一个处理二氧化碳,另一个处理塑料垃圾,整个装置由钙钛矿太阳能电池供电。然而,该版本仅适用于来自钢瓶的浓缩二氧化碳,这可用作概念证明,但不一定适用于现实世界的设置。因此,对于新版本,该团队对其进行了调整,以处理烟气中的二氧化碳,甚至是环境空气中的二氧化碳。首先,空气被泵送通过碱性溶液,该溶液仅捕获二氧化碳,同时允许氧气和氮气等其他气体以气泡形式逸出。然后可以在另一个腔室的帮助下处理提纯的二氧化碳。“塑料成分是这个系统的一个重要技巧,”该研究的共同第一作者MotiarRahaman博士说。“从空气中捕获和使用二氧化碳会使化学反应变得更加困难。但是,如果我们将塑料废物添加到系统中,塑料就会向CO2提供电子。塑料分解为广泛用于化妆品行业的乙醇酸,二氧化碳转化为合成气,这是一种简单的燃料。”该团队表示,这项技术可以大大有助于解决这两种主要的环境危害,并最终有助于为实现无化石燃料的未来铺平道路。“我们不仅对脱碳感兴趣,而且对去化石化感兴趣——我们需要完全消除化石燃料,以创造真正的循环经济,”该研究的第一作者ErwinReisner教授说。“从中期来看,这项技术可以通过从工业中捕获碳并将其转化为有用的东西来帮助减少碳排放,但最终,我们需要将化石燃料完全排除在外,并从空气中捕获二氧化碳。”该研究发表在《焦耳》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1366585.htm手机版:https://m.cnbeta.com.tw/view/1366585.htm

封面图片

我国科学家用废旧电池将二氧化碳转化为燃料

我国科学家用废旧电池将二氧化碳转化为燃料2月1日,记者从华中科技大学获悉,该校化学与化工学院夏宝玉教授团队利用回收的废旧电池,将二氧化碳转化为具有高经济价值的甲酸。“这项技术的经济价值十分可观。”夏宝玉说,团队设计的二氧化碳电解反应器能在高效稳定运行的基础上实现面积与产量40倍放大。按照当前市场成本估计,每电解产生1吨甲酸,就将获得244美元盈利,并有望实现工业化应用。相关研究成果日前发表于《自然》杂志。(科技日报)

封面图片

新型催化剂可将二氧化碳高效转化为甲烷 转化率高达99.3%

新型催化剂可将二氧化碳高效转化为甲烷转化率高达99.3%DGIST的一个研究小组开发出一种先进的光催化剂,它能有效地将二氧化碳转化为甲烷,有可能为应对全球变暖提供一种可持续的解决方案。来自DGIST能源科学与工程系的InSoo-il教授及其团队成功开发出一种高效光催化剂。这项创新能够将导致气候变化的重要因素二氧化碳(CO2)转化为甲烷(CH4),也就是通常所说的天然气。全球变暖导致世界各地气候异常,威胁着人类的生存。减少温室气体是解决日益令人担忧的全球变暖问题的关键,这需要将大气中的二氧化碳转化为其他物质。光催化技术是一种环保解决方案,它只需利用太阳能和水就能将二氧化碳转化为有用的物质,如天然气。生产出的天然气可在日常生活中用作供暖、制冷系统和车辆的燃料。光催化材料的改进研究小组将吸收可见光和红外线的硒化镉与二氧化钛(一种金属氧化物和著名的光催化材料)结合起来,高效地将二氧化碳转化为天然气。以前,人们曾将具有周期性晶格结构的结晶二氧化钛作为光催化材料进行分析。然而,由于颗粒的规则排列,钛的三价阳离子(Ti3+)的活性位点的形成受到了限制。为了克服这个问题,In教授的团队使用无定形二氧化钛改进了催化反应,因为无定形二氧化钛可以通过缺乏晶格结构周期性的不规则颗粒排列形成更多的Ti3+活性位点。除了催化作用得到改善外,电荷转移过程也很稳定,可确保有足够的电子参与反应。这有助于将二氧化碳转化为碳化合物,特别是甲烷燃料。此外,与需要高温再生的传统光催化剂不同,无定形催化剂在不加热的情况下向反应器供氧,可在一分钟内再生。高效率和未来研究方向研究小组新开发的无定形二氧化钛-硒化镉光催化剂(TiO2-CdSe)在光反应18小时后的前6小时内甲烷转化率仍高达99.3%,是具有相同成分的晶体光催化剂(C-TiO2-CdSe)的4.22倍。"这项研究的重要意义在于,我们开发出了一种具有再生活性位点的催化剂,并通过计算化学研究确定了利用非晶态催化剂将二氧化碳转化为甲烷的机理,"DGISTIn教授说。"我们将开展后续研究,以改善无定形光催化剂的能量损失,并提高其长期稳定性,从而实现该技术的未来商业化。"编译来源:ScitechDailyDOI:10.1016/j.apcatb.2024.124006...PC版:https://www.cnbeta.com.tw/articles/soft/1434187.htm手机版:https://m.cnbeta.com.tw/view/1434187.htm

封面图片

科学家研究打造地球之外的人工碳循环

科学家研究打造地球之外的人工碳循环例如,宇航员每天需要近一公斤的氧气来维持生命。因此,每年必须运输数吨氧气才能在地外建立空间站,从而增加了任务的成本和风险。预计在地外站点建立人工碳循环可以改变这种状况。在地球上,碳循环使碳原子从大气层(以二氧化碳和甲烷等气态碳化合物的形式存在)转移到地球(以糖、淀粉等形式存在),最后返回大气层,完成循环。这种生物地球化学循环的能量输入由太阳能提供,植物或其他生物吸收太阳能,通过光合作用将CO2和H2O转化为碳基化合物和氧气。鉴于目前的目标地外地点(即月球和火星)拥有充足的太阳光照射,并显示出丰富的二氧化碳和水储备,因此可采用这种光合作用策略在地外地点建立人工碳循环系统,为太空任务提供充足的推进剂和生命支持。随着在地外星球发现丰富的二氧化碳和水储备,有人提出也可以在地外星球实施光催化二氧化碳转化,建立人工碳循环系统,为太空任务提供推进剂和生命支持。人工光合作用:可持续的解决方案在此背景下,通过光催化二氧化碳转化进行人工光合作用,有望实现可持续循环。具体来说,这种策略可以模仿绿色植物光合作用的作用,有望在地球上重建目前因二氧化碳排放过量而中断的自然界碳循环。这种人工光合作用战略如果作为ISRU的一部分在地外站点成功实施,也可以在地外站点建立人工碳循环。迄今为止,通过光催化二氧化碳转化已成功生产出多种产品,如CO、CH4、CH3OH和HCHO。然而,光催化CO2的转化效率仍不能满足实际应用的需要。因此,开发具有优异光转化效率和产品选择性的光催化二氧化碳转化技术,不仅在地球上,而且在地外也有很大的应用前景。地外光催化的研究前景最近,中国科学技术大学熊玉杰教授领导的研究团队撰写了一篇关于地外光催化二氧化碳转化的评论,为光催化二氧化碳转化的发展及其在地球以外的应用提供了简明清晰的指导。他们首先概述了光催化二氧化碳转化的基本和一般原理。然后,他们总结了光催化技术在地外实施过程中可能遇到的问题。最后,对这一领域的发展进行了展望。相关成果发表在《中国催化学报》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1382765.htm手机版:https://m.cnbeta.com.tw/view/1382765.htm

封面图片

让二氧化碳发挥作用 科学家利用电化学将碳转化为有用的分子

让二氧化碳发挥作用科学家利用电化学将碳转化为有用的分子该团队的论文最近发表在《自然》杂志上。该论文的共同第一作者是中国四川大学的博士后研究员余鹏和张文以及孙国权。由文理学院化学和化学生物学教授宋林领导的康奈尔大学团队以前曾利用电化学过程将简单的碳分子拼接起来,形成复杂的化合物,不需要贵金属或其他催化剂来促进化学反应。在新项目中,他们将目光投向了一个更具体的目标:吡啶,FDA批准的药物中第二普遍的杂环化合物。杂环是有机化合物,其中分子的原子被连接成环状结构,其中至少有一个不是碳。这些结构单元被认为是"药引子",因为它们经常出现在有药用价值的化合物中。它们也普遍存在于农用化学品中。研究人员的目标是制造羧基化的吡啶,即附加了二氧化碳的吡啶。将二氧化碳引入吡啶环的好处是,它可以改变分子的功能,并有可能帮助它与某些目标结合,如蛋白质。然而,这两个分子并不是天然的伙伴。吡啶是一种反应性分子,而二氧化碳通常是惰性的。该论文的共同第一作者、四川大学的余大刚说:"直接将二氧化碳引入吡啶的方法非常少。目前的方法有非常严重的局限性。"宋林的实验室将其在电化学方面的专长与余的小组在有机合成中利用二氧化碳的专长相结合,他们能够成功地创造出羧基吡啶。他说:"电化学给了你这种杠杆作用,可以拨出足以激活甚至一些最惰性的分子的电位,这就是我们能够实现这一反应的原因。"该团队的偶然发现是在他们进行电合成的时候出现的。化学家们通常以两种方式之一进行电化学反应:在一个非分割的电化学池中(其中提供电流的阳极和阴极在同一溶液中)或在一个分割的电化学池中(其中阳极和阴极被一个多孔隔板隔开,该隔板阻止大型有机分子但允许离子通过)。一种方法可能比另一种更有效,但它们都产生相同的产品。研究小组发现,通过从分裂的电池切换到不分裂的电池,他们可以选择性地将二氧化碳分子附着在吡啶环的不同位置上,产生两种不同的产品。在未分裂的细胞中产生C4-羧化作用,在分裂的细胞中产生C5-羧化作用。"这是我们第一次发现,仅仅通过简单地改变细胞,也就是我们所说的电化学反应器,就能完全改变产品,"宋林说。"我认为对其发生原因的机理理解将使我们能够继续将同样的策略应用于其他分子,而不仅仅是吡啶,也许还能以这种选择性但可控的方式制造其他分子。我认为这是一个可以推广到其他系统的一般原则。"虽然该项目的二氧化碳利用形式不会解决气候变化的全球挑战,但这是以有用的方式利用过量二氧化碳的一小步。...PC版:https://www.cnbeta.com.tw/articles/soft/1346465.htm手机版:https://m.cnbeta.com.tw/view/1346465.htm

封面图片

新型反应堆系统将二氧化碳转化为可用燃料

新型反应堆系统将二氧化碳转化为可用燃料锅炉的效率通常很高。因此,仅靠提高燃烧效率很难减少二氧化碳排放。因此,研究人员正在探索其他方法,以减轻锅炉排放的二氧化碳对环境的影响。为此,一个很有前景的策略是捕获这些系统排放的二氧化碳,并将其转化为有用的产品,如甲烷。要实施这一战略,需要一种特殊类型的膜反应器,即分配器型膜反应器(DMR),它既能促进化学反应,又能分离气体。虽然DMR已在某些行业中使用,但其在将二氧化碳转化为甲烷方面的应用,尤其是在锅炉等小型系统中的应用,仍相对较少。由日本芝浦工业大学的野村干弘教授和波兰AGH科技大学的GrzegorzBrus教授领导的一组日本和波兰研究人员填补了这一研究空白。他们的研究成果最近发表在《二氧化碳利用期刊》上。来自日本和波兰的研究人员开发出一种反应堆设计,可有效捕捉二氧化碳排放并将其转化为可用的甲烷燃料。这一突破可大幅减少温室气体排放,为实现碳中和的未来铺平道路。资料来源:日本SIT的野村干弘教授研究小组双管齐下,通过数值模拟和实验研究来优化反应器设计,以便将小型锅炉中的二氧化碳高效转化为甲烷。在模拟过程中,研究小组模拟了气体在不同条件下的流动和反应。这反过来又使他们能够最大限度地减少温度变化,确保在甲烷生产保持可靠的同时优化能源消耗。研究小组还发现,与将气体导入单一位置的传统方法不同,分布式进料设计可以将气体分散到反应器中,而不是从一个地方送入。这反过来又能使二氧化碳更好地分布在整个膜中,防止任何位置过热。野村教授解释说:"与传统的填料床反应器相比,这种DMR设计帮助我们将温度增量降低了约300度。"除了分布式进料设计,研究人员还探索了影响反应器效率的其他因素,并发现一个关键变量是混合物中的二氧化碳浓度。改变混合物中的二氧化碳含量会影响反应的效果。"当二氧化碳浓度为15%左右(与锅炉中的二氧化碳浓度相似)时,反应器生产甲烷的效果要好得多。事实上,与只有纯二氧化碳的普通反应器相比,它能多产生约1.5倍的甲烷,"野村教授强调说。此外,研究小组还研究了反应器尺寸的影响,发现增大反应器尺寸有助于为反应提供氢气。不过,需要考虑一个折衷的问题,因为提高氢气可用性的好处需要谨慎的温度管理,以避免过热。因此,这项研究为解决温室气体排放的主要来源问题提供了一个前景广阔的解决方案。通过利用DMR,可以成功地将低浓度二氧化碳排放转化为可用的甲烷燃料。由此获得的益处不仅限于甲烷化,还可应用于其他反应,从而使这种方法成为高效利用二氧化碳的多功能工具,甚至适用于家庭和小型工厂。这项研究得到了波兰国家机构、克拉科夫AGH大学和日本科学促进会的资助。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432823.htm手机版:https://m.cnbeta.com.tw/view/1432823.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人