科学家在土星卫星Enceladus上找到了生命所需的一种重要元素

科学家在土星卫星Enceladus上找到了生命所需的一种重要元素由于在土星的卫星之一--Enceladus的海洋中发现了一种新的重要元素,该卫星上出现生命的机会可能已经得到增加。根据9月份发表的新研究,该卫星的海洋可能富含磷,而这是我们所知的生命所依赖的重要元素之一。PC版:https://www.cnbeta.com/articles/soft/1324997.htm手机版:https://m.cnbeta.com/view/1324997.htm

相关推荐

封面图片

科学家证实土卫二具有生命存在的所有所需基本物质

科学家证实土卫二具有生命存在的所有所需基本物质地球上的所有生命都依赖六种基本元素:碳、氢、氮、氧、硫和磷。到目前为止,磷是唯一一种研究人员从未在地球以外发现过的元素。来自土星第六大卫星的样本证实了所有六种元素的存在。这些样本来自土星的一个环,主要包含从月球冰面下方深处液态海洋中的间歇泉状火山喷出的水冰。在2017年NASA的卡西尼号任务结束之前,它从环中收集了样本,但之前的检查几乎没有检测到磷。然而,使用新的地球化学模型进行的研究表明,土卫二上的磷含量丰富,其浓度至少比地球海洋高100倍。研究结果表明,二氧化碳雪线以外的其他世界——太阳系外太阳光线不再融化二氧化碳并冻结成冰的点——可能与土卫二一样宜居。其中包括冥王星和海王星的卫星海卫一。柏林自由大学行星科学家FrankPostberg告诉Motherboard,尽管离太阳太远而无法获得充足的阳光,但这样的环境仍可以支持生命存在。生命必需的热量可能来自热液喷口,这些热液喷口在地球最深的海洋中很丰富。美国宇航局上个月底使用詹姆斯韦伯望远镜探测到土卫二发生了大规模的水喷发,羽流扩散超过6,000英里——大约是月球直径的20倍。望远镜的进一步观察可能会发现更多关于土卫二的信息。然而,最近对磷的发现源于应用于旧数据的新数据科学技术。同样,应用于NASA航海者2号任务37年历史数据的新模型揭示了一些围绕天王星运行的卫星(包括Titania、Oberon、Ariel和Umbriel)上存在地下海洋的可能性。...PC版:https://www.cnbeta.com.tw/articles/soft/1365357.htm手机版:https://m.cnbeta.com.tw/view/1365357.htm

封面图片

科学家在土卫二上发现了生命关键构件的新证据

科学家在土卫二上发现了生命关键构件的新证据寻找地外生命的工作刚刚变得更加耐人寻味,因为由美国西南研究院的ChristopherGlein博士领导的一组研究人员在土星卫星—土卫二(Enceladus)的次表层海洋中发现了生命的一个关键构件的新证据。根据新的建模,土卫二的海洋应该含有相当丰富的溶解磷,这是生命的一个关键成分。PC版:https://www.cnbeta.com/articles/soft/1324755.htm手机版:https://m.cnbeta.com/view/1324755.htm

封面图片

科学家提出新理论:土星失踪的卫星或藏在星环中

科学家提出新理论:土星失踪的卫星或藏在星环中著名的土星环并不是那种人们很容易就能得到的东西--一个新理论表明,它们是在这个气态巨人的一个卫星离这个巨大行星太近时形成。这颗不幸的卫星可能被其主人的强大引力场所吸引,然后真的把它拉开。PC版:https://www.cnbeta.com/articles/soft/1316781.htm手机版:https://m.cnbeta.com/view/1316781.htm

封面图片

科学家开发出创新方法分离对清洁能源技术至关重要的镧系元素

科学家开发出创新方法分离对清洁能源技术至关重要的镧系元素水溶性和油溶性有机分子能有效分离元素周期表中的镧系元素。资料来源:橡树岭国家实验室镧系元素与清洁能源被称为镧系元素的金属具有宝贵的特性,可用于电动汽车和风力涡轮机等清洁能源技术以及许多其他应用。这些元素包括几种关键材料。在自然界中,镧系元素经常混合在一起。工业界必须将它们分离出来,以利用它们各自的特性。但传统的分离方法耗时长、成本高,而且会产生废弃物。现在,科学家们已经开发出一种高效的新方法,可以根据具体情况选择特定的镧系元素。该技术结合了两种物质。一种物质喜水,可捕捉较轻的镧系元素;另一种物质喜油,可捕捉较重的镧系元素。分离技术的创新将一种亲油化合物和一种亲水化合物混合在一起,从化学混合物中提取特定的有价值元素,这在工业规模上是可行的。扩大规模后,该工艺可以使用更小的设备、更少的化学品和更少的废物。这将使新工艺比传统方法更高效、更环保。稀土材料加工取得突破为清洁能源技术制造纯稀土材料--14种镧系元素以及钇和钪--最具挑战性和最昂贵的方面是将单个稀土元素相互分离。橡树岭国家实验室的科学家将两种有机物结合在一起:一种亲水,另一种亲油。这些有机物对不同的稀土元素有偏好。例如,一种与较轻的稀土元素相互作用强烈,而另一种则偏爱较重的稀土元素。科学家们用两种不同的液体--油和水--来测试这种技术。在水中,他们溶解了亲水性物质;在油中,他们加入了亲油性物质。他们发现,与之前使用的单物质方法相比,双物质方法有助于分离最轻和最重的稀土元素。他们使用各种方法研究这些有机化学物质和稀土元素如何相互作用。研究结果提供了有关该过程如何工作的宝贵信息,以及有关如何进一步改进分离系统的真知灼见。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426802.htm手机版:https://m.cnbeta.com.tw/view/1426802.htm

封面图片

科学家发现地球生命的潜在星际起源

科学家发现地球生命的潜在星际起源在地球上出现生命之前,基本的有机分子是由氮、硫、碳和磷等稀缺元素形成的。新的研究表明,富含这些元素的宇宙尘埃可能通过在地球上,特别是在冰原融洞中的高浓度积累,启动了前生物化学,从而有可能导致生命组成元素的形成。资料来源:NASA/JPL-Caltech事实上,生命的基本组成元素是如此稀少,以至于化学反应很快就会耗尽,如果它们真的能够进行的话。地球组成岩石的侵蚀和风化等地质过程也无法确保充足的供应,因为地壳中包含的这些元素实在太少了。尽管如此,在地球历史的前5亿年里,发生了一种前生物化学反应,产生了诸如RNA、DNA、脂肪酸和蛋白质等有机分子,所有生命都是在这些有机分子的基础上诞生的。所需数量的硫、磷、氮和碳从何而来?地质学家、诺米斯研究员克雷格-沃尔顿坚信,这些元素主要是以宇宙尘埃的形式来到地球的。这些尘埃是在太空中产生的,例如当小行星相互碰撞时。即使在今天,每年仍有约3万吨尘埃从太空落到地球上。然而,在地球诞生的早期,尘埃的数量要大得多,每年高达数百万吨。然而,最重要的是,尘埃粒子含有大量的氮、碳、硫和磷。因此,它们有可能引发化学级联反应。然而,灰尘的散布范围很广,在任何一个地方都只能发现极少量的灰尘,这一事实与上述说法相悖。沃尔顿说:"但如果把运输过程包括在内,情况就会不同。风、雨或河流在大范围内收集宇宙尘埃,并以浓缩的形式沉积在某些地方。"澄清问题的新模式为了弄清宇宙尘埃是否可能是启动前生物化学(反应)的源头,沃尔顿与剑桥大学的同事们一起建立了一个模型。研究人员利用该模型模拟了在地球历史的最初5亿年里,有多少宇宙尘埃落到了地球上,以及这些尘埃可能在地球表面的哪些地方积聚。他们的研究现已发表在科学杂志《自然-天文学》上。该模型是与剑桥大学的沉积专家和天体物理学家合作开发的。英国研究人员专门从事行星和小行星系统的模拟研究。模拟显示,早期地球上可能存在宇宙尘埃浓度极高的地方。而且,来自太空的补给源源不断。然而,地球形成后,尘埃雨迅速锐减:5亿年后,尘埃流比零年小了一个数量级。研究人员将偶尔出现的上升高峰归因于小行星碎裂并向地球发送了尘埃尾流。冰原上的融化洞是尘埃陷阱大多数科学家和普通人都认为,地球被岩浆海洋覆盖了数百万年;这将在很长一段时间内阻止宇宙尘埃的迁移和沉积。沃尔顿说:"然而,最近的研究发现,有证据表明地球表面冷却和凝固的速度非常快,并形成了大面积的冰原。"根据模拟结果,这些冰原可能是宇宙尘埃积聚的最佳环境。冰川表面的融化孔--即所谓的冷冻孔--不仅会使沉积物积聚,也会使来自太空的尘粒积聚。随着时间的推移,尘埃粒子中释放出相应的元素。当它们在冰川水中的浓度达到临界值时,化学反应就会自动开始,从而形成有机分子,这就是生命的起源。即使在熔洞冰冷的温度下,化学过程也有可能开始进行。沃尔顿说:"低温并不会破坏有机化学,相反,低温下的反应比高温下的反应更有选择性和特异性。其他研究人员已经在实验室中证明,简单的环形核糖核酸(RNA)会在冰点附近的温度下自发地在这种融水汤中形成,然后进行自我复制。该论点的一个弱点可能是,在低温条件下,形成有机分子所需的元素只能非常缓慢地从尘埃粒子中溶解出来。"启动关于生命起源的辩论沃尔顿提出的理论在科学界并非没有争议。这项研究肯定会引发一场有争议的科学辩论,但它也会引发关于生命起源的新观点。早在18和19世纪,科学家们就确信陨石将沃尔顿所说的"生命元素"带到了地球。即使在当时,研究人员也在来自太空的岩石中发现了大量这些元素,但在地球的基岩中却没有发现。沃尔顿说:"然而,从那时起,几乎没有人考虑过前生物化学主要是由陨石引发的这一观点。"沃尔顿解释说:"陨石的想法听起来很有吸引力,但有一个问题。一块陨石只能在有限的环境中提供这些物质;陨石撞击地面的位置是随机的,而且无法保证进一步的供应。我认为,生命的起源不太可能依赖于几块广泛而随机散落的岩石。"另一方面,我认为富集的宇宙尘埃是一个可信的来源。"沃尔顿的下一步将是通过实验检验他的理论。在实验室中,他将使用大型反应容器来重现原始熔洞中可能存在的条件,然后将初始条件设定为40亿年前低温熔洞中可能存在的条件,最后再观察是否真的发生了产生生物相关分子的化学反应。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428240.htm手机版:https://m.cnbeta.com.tw/view/1428240.htm

封面图片

科学家发现可能引发地球生命的 "先锋肽"

科学家发现可能引发地球生命的"先锋肽"罗格斯大学的一个科学家小组致力于确定新陈代谢的原始起源--一套首先为地球上的生命提供动力的核心化学反应,现在他们已经确定了一种蛋白质的一部分,可以为科学家提供探测即将产生生命的行星的线索。罗格斯大学高级生物技术和医学中心(CABM)的研究员VikasNanda说,这项研究于3月10日发表在《科学进展》杂志上,对寻找地外生命具有重要意义,因为它为研究人员提供了一条新的线索。根据实验室研究,罗格斯大学的科学家们说,启动生命的最有可能的化学候选物之一是一种带有两个镍原子的简单肽,他们称之为"Nickelback",不是因为它与加拿大摇滚乐队有什么关系,而是因为它的骨架氮原子与两个关键的镍原子结合。肽是由被称为氨基酸的一些元素组成的蛋白质的一个成分。Nanda说:"科学家们相信,在35亿到38亿年前的某个时候,出现了一个转折点,一些东西启动了从生物前化学--生命之前的分子--到生命、生物系统的变化。我们相信这一变化是由一些小的前体蛋白引发的,它们在一个古老的代谢反应中执行关键步骤。而且我们认为我们已经找到了这些'先锋肽'中的一个。"镍背肽的计算机渲染图显示了连接两个关键镍原子(橙色)的骨架氮原子(蓝色)。确定了蛋白质的这一部分的科学家认为它可能为探测即将产生生命的行星提供线索。资料来源:Nanda实验室进行这项研究的科学家是罗格斯大学领导的一个名为"地球圈和微生物祖先的纳米机械进化"(ENIGMA)的团队的一部分,该团队是美国宇航局天体生物学项目的一部分。研究人员正在寻求了解蛋白质是如何演化成为地球上生命的主要催化剂的。当用望远镜和探测器在宇宙中寻找过去、现在或新兴生命的迹象时,美国宇航局的科学家们寻找特定的"生物特征",这些特征被认为是生命的预兆。研究人员推断,一种原始的煽动性化学物质需要足够简单,以便能够在前生物汤中自发地组装起来。但它必须具有足够的化学活性,以拥有从环境中获取能量来驱动生化过程的潜力。为此,研究人员采用了一种"还原主义"方法。他们首先研究了已知与代谢过程相关的现有当代蛋白质。由于知道这些蛋白质太过复杂,不可能在早期就出现,因此他们将其简化为基本结构。经过一连串的实验,研究人员得出结论,最好的候选者是Nickelback。该肽由13个氨基酸组成,并与两个镍离子结合。他们推断,镍是早期海洋中一种丰富的金属。当与肽结合时,镍原子成为强大的催化剂,吸引额外的质子和电子并产生氢气。研究人员推断,氢气在早期地球上也是比较丰富的,而且会是为新陈代谢提供能量的一个重要来源。Nanda说:"这很重要,因为虽然有许多关于生命起源的理论,但对这些想法的实际实验室测试却很少。这项工作表明,不仅简单的蛋白质代谢酶是可能的,而且它们是非常稳定和非常活跃的--使它们成为生命的一个合理的起点。"...PC版:https://www.cnbeta.com.tw/articles/soft/1348925.htm手机版:https://m.cnbeta.com.tw/view/1348925.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人